Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thực hiện như sau:
Dựng \(\Delta'=Đ_1\left(\Delta\right)\)và giả sử \(\Delta'\) cắt \(\left(O;R\right)\) tại \(A\)
Nối \(IA\) cắt \(\Delta\) tại \(B\)
Khi đó \(I\) là trung điểm của đoạn thẳng \(AB\)
Bài toán chỉ có nghiệm khi đường thẳng \(\Delta'\)cắt đường tròn \(\left(O;R\right)\)
a) S, I, J, G là điểm chunng của (SAE) và (SBD)
b) S, K, L là điểm chung của (SAB) và (SDE)
Gọi H là hình chiếu vuông góc của A lên (BCD)
\(AB=AC=AD\Rightarrow HA=HB=HC\Rightarrow H\) là tâm đáy
\(\Rightarrow DH\perp BC\)
Mà \(AH\perp\left(BCD\right)\Rightarrow AH\perp BC\)
\(\Rightarrow BC\perp\left(ADH\right)\Rightarrow BC\perp AD\)
b/ Chắc bạn nhầm đề?
Hoàn toàn tương tự câu a, ta chứng minh được \(CD\perp\left(ABH\right)\Rightarrow CD\perp AB\Rightarrow\left(AB;CD\right)=90^0\)
Điểm I để làm gì nhỉ? :<
a: Xét ΔAMB có ME là đường phân giác
nên AE/EB=AM/MB=AM/MC(4)
XétΔAMC có MD là đường phân giác
nên AD/DC=AM/MC(5)
Từ (4) và (5) suy ra AE/EB=AD/DC
b: Xét ΔABC có
AE/EB=AD/DC
nên ED//BC
Xét ΔABM có EI//BM
nên EI/BM=AE/AB(1)
Xét ΔACM có ID//MC
nên ID/MC=AD/AC(2)
Xét ΔABC có
ED//BC
nên AE/AB=AD/AC(3)
Từ (1), (2) và (3) suy ra EI/BM=DI/MC
mà BM=CM
nên EI=DI
hay I là trung điểm của ED
a: Xét ΔAMB và ΔAMC có
AB=AC
AM chung
MB=MC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nen AM là đường cao
=>a//BC