\(\Delta\) ABC có AB = 6cm ; AC = 8cm và BC = 10cm. Lấy D bất kì trên AB, kẻ DE sao c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2018

a) Xét tứ giác AEDF có DE song song và bằng AF nên AEDF là hình bình hành (Dấu hiệu nhận biết).

Vậy thì AE = FD (tính chất hình bình hành)

b) Do AEDF là hình bình hành nên hai đường chéo AD và EF cắt nhau tại trung điểm mỗi đường.

Theo đề bài thì I là trung điểm AD nên I cũng là trung điểm EF.

Vậy E đối xứng với F qua I.

6 tháng 4 2020

A B C 6 cm D E Xét △ ABC, có DE//BC

\(\Rightarrow\frac{DE}{BC}=\frac{AD}{AB}=\frac{1}{3}\)

\(\Rightarrow\frac{DE}{6}=\frac{1}{3}\Rightarrow DE=\frac{1}{3}.6=2\) (cm)

Vậy DE=2 cm

7 tháng 7 2018

Tự vẽ hình nhé Nữ hoàng sến súa là ta

Lấy K là trung điểm của AB. Nối K với E,K và C. Từ đó ta thấy D là trung điểm của AK

Do \(KEKE\)là đường trung bình tam giác \(ABCABC\)nên KE // BCKE // BC và KE=12BCKE=12BC

Lại có \(DEDE\)là đường trung bình tam giác \(AKCAKC\)nên DE // KCDE // KC

Ta thấy \(\Delta KEC\)và \(\Delta FCE\)có:

+ Chung CE

\(\widehat{KEC}=\widehat{FCE}\)( so le trong )

\(\widehat{ADE}=\widehat{ACK}\)( đồng vị ) ( mà \(\widehat{ADE}=\widehat{CEF}\Rightarrow\widehat{CEF}=\widehat{ACK}\))

\(\Rightarrow\Delta KEC=\Delta FCE\)( g.c.g ) \(\Rightarrow CF=EK\)

Mà \(EK=\frac{1}{2}BC\Rightarrow CF=\frac{1}{2}BC\)

Vậy \(CF=\frac{1}{2}BC\left(đpcm\right)\)


 

7 tháng 7 2018

Hình nè, nếu bạn không vẽ được:

Hình xấu thông cảm

19 tháng 7 2018

Áp dụng định lí Menelaus :

\(\frac{AE}{CE}\).\(\frac{AD}{BD}\).\(\frac{BF}{CF}\)= 1

Mà AE = CE, AD = 1/3BD

=> BF/CF = 3

=> CF = 1/2 BC

23 tháng 3 2020