Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Do EF//AD nên \(EF\perp AB\)
Theo tính chất đường kính dây cung ta có AB đi qua trung điểm EF hay AB là trung trực EF.
Vậy thì AE = AF; BE = BF.
2/ Ta thấy hai tam giác vuông DAO và DCO có chung cạnh huyền DO nên DAOC là tứ giác nội tiếp đường tròn đường kính DO.
3/Xét tam giác DEC và DCB có :
Góc D chung
\(\widehat{DCE}=\widehat{DBC}\) (Góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn một cung)
\(\Rightarrow\Delta DEC\sim\Delta DCB\left(g-g\right)\)
\(\Rightarrow\frac{DE}{DC}=\frac{DC}{DB}\Rightarrow DC^2=DE.DB\)
4/ Vì \(\Delta DEC\sim\Delta DCB\Rightarrow\frac{EC}{BC}=\frac{DC}{DB}\Rightarrow EC=\frac{BC.DC}{DB}\)
\(\Rightarrow AC.EC=\frac{AC.BC.DC}{DB}=\frac{2S_{ABC}.DC}{DB}\)
Ta cần chứng minh AC.EC = AF.CH (*) hay \(\Rightarrow\frac{2S_{ABC}.DC}{CH}=AF.DB\Rightarrow\frac{2S_{ABC}.DC}{CH}=AE.DB\)
\(\Rightarrow AE.DB=AB.DC=AB.DA\) (**)
(**) đúng vì \(AE.DB=AB.DA\left(=S_{DAB}\right)\)
Vậy (*) đúng hay AF.CH = AC.EC
5/ Ta cần chứng minh KA = KD để suy ra KE là tiếp tuyến.
Kéo dài AE, cắt CH tại M .
Do DA // CH (Cùng vuông góc AB) nên \(\frac{AK}{CM}=\frac{KI}{IC}\)
và \(\frac{KD}{CH}=\frac{KI}{IC}\Rightarrow\frac{AK}{MC}=\frac{KD}{CH}\) (1)
Gọi P, J lần lượt là giao điểm của DP với CH và BC với AD.
\(\Rightarrow\frac{HP}{AD}=\frac{BP}{BD}=\frac{CP}{DJ}\) (2)
Xét tam giác ACJ vuông tại C, AD = DC nên DC là đường trung tuyến. Suy ra AD = DJ.
Từ (2) suy ra HP = PC.
Xét tam giác vuông AMH và PBH, ta có \(\widehat{AMH}=\widehat{HBP}\) (cạnh tương ứng vuông góc)
\(\Rightarrow\Delta AMH\sim\Delta PBH\left(g-g\right)\)
\(\Rightarrow\frac{MH}{BH}=\frac{AH}{PH}\Rightarrow\frac{MH}{AH}=\frac{BH}{PH}\)
\(\Rightarrow MH=\frac{AH.HB}{PH}=\frac{AH.HB}{\frac{CH}{2}}=\frac{2AH.HB}{CH}\) (3)
Do CH2 = AH.HB \(\Rightarrow\frac{2AH.HB}{CH}=2CH\)
Từ (3) \(\Rightarrow MH=2CH\Rightarrow CM=CH\)
Từ (1) ta có AK = KD
\(\Rightarrow\) KE là trung tuyến của tam giác vuông ADE \(\Rightarrow KA=KE\)
\(\Rightarrow\Delta OKA=\Delta OKE\left(c-c-c\right)\Rightarrow\widehat{KEO}=\widehat{KAO}=90^o\)
hay KE là tiếp tuyến của (O).
Minh goi y thoi nhe muon roi mik chuan bi di ngu bn thong cam
a) ban dung dinh nghia tiep tuyen la xong
b) cm O la truc tam tam giac BAN roi dung yeu to // la ok
c) mik nghi la : de thay Samn=1/2 Sabc (t/c trung tuyen.....)
thi Samn Min <=> Sabc min
Cau c) mik ko chac lam co cau a,b ban cu lam theo mik kieu gi cung ra
Co gi de mai mik ngu day mik lam cho
a) Xet \(\Delta ADE\) co AO=DO=EO=R => DE la duong kinh (O)
Ta co MD cat (O) duy nhat tai D=> MD la tiep tuyen (O)=> \(MD\perp DE\)
Tuong tu NE la tiep tuyen (O) =>\(NE\perp DE\)
Suy ra MD//NE ( Quan he tu vuong goc den song song)
b) Noi NO , Goi F la trung diem OH
Xet \(\Delta AHC\) co OH=OA ( gt) , HN=NC (gt)
=> ON la duong trung binh => ON//AC
ma AB \(AB\perp AC\left(\Delta ABCvuong\right)\)
Suy ra \(NO\perp AB\)
Xet tam giac ABN co \(AH\perp BN\left(gt\right),NO\perp AB\left(cmt\right)\) => O la truc tam tam giac ABN
=> \(BO\perp AN\) (1)
Xet tam giac giac BHO co M la trung diem BH (gt) , F la trung diem OH ( gt)
=> MF la duong trung binh => MF//BO (2)
Tu (1) va (20 suy ra \(MF\perp AN\) (quan he tu vuong goc den song song)
Xet tam giac AMN co \(\hept{\begin{cases}AH\perp MN\left(gt\right)\\MF\perp AN\left(cmt\right)\end{cases}\Rightarrow}\) Trung diem F cua OH la truc tam \(\Delta AMN\)
c) Xet tam giac ABH co AM la duong trung tuyen =>Samh =Sabm ( t/c trug tuyen chia cat doi dien thang 2 phan co dien h bag nhau)
=> Samh=1/2Sabh
tuong tu ta cung co Sahn = 1/2 Sahc
Suy ra Samh+Sahn =1/2 (Sabh +Sahc)
<=> Samn=1/2 Sabc
=> Samn min <=> Sabc min
Theo minh thi tam giac ABC can co dk la dien h tam giac ABC nho nhat thi Samn dat gtnn
Mik ko chac cau c) lam dau. Neu sai mong cac bn thong cam ma sua ho mik,Mik cam on.
Chuc ban hoc tot
a) Áp dụng định lí Pytago đảo, ta được đpcm.
b) Ta có : \(S_{\Delta ABC}=\frac{1}{2}.AH.BC=\frac{1}{2}.AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=\frac{12}{5}\left(cm\right)\)
c) HF // AB => Góc CHF = Góc B (đồng vị) ; Góc HFC = Góc BEH = 90 độ
=> \(\Delta HFC~\Delta BEH\left(g.g\right)\)
d)Dễ thấy : \(\Delta HBA~\Delta ABC\left(g.g\right)\Rightarrow\frac{BH}{AB}=\frac{AB}{BC}\Rightarrow AB^2=BH.BC\)(1)
\(\Delta HCA~\Delta ACB\left(g.g\right)\Rightarrow\frac{HC}{AC}=\frac{AC}{BC}\Rightarrow AC^2=CH.BC\)(2)
Từ (1) và (2) suy ra : \(\frac{AB^2}{AC^2}=\frac{BH.BC}{CH.BC}=\frac{BH}{CH}\)