Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Bài này chủ yếu sử dụng công thức lượng giác.
Vì sin của hai góc bù nhau thì bằng nhau (công thức lượng giác)
\(\Rightarrow \sin \beta=\sin AMC\)\((1)\)
Tam giác $ABC$ vuông tại $A$ có $M$ là trung điểm của $BC$ nên
\(BM=MC=AM\Rightarrow \triangle AMC\) cân tại $M$
\(\Rightarrow \widehat {MAC}=\widehat{MCA}\Rightarrow \widehat{MAC}+\widehat{MCA}=2\widehat{MCA}=2\alpha\)\((2)\)
Từ \((1),(2)\)
\(\Rightarrow \sin \beta=\sin AMC=\sin (180-\widehat{MAC}-\widehat{MCA})=\sin (180-2\sin \alpha)=\sin (2\alpha)\)
\(\Leftrightarrow 1+\sin \beta=1+\sin 2\alpha\)
\(\Leftrightarrow 1+\sin \beta=\cos ^2\alpha+\sin ^2\alpha+\sin 2\alpha=\cos ^2\alpha+\sin^2\alpha+2\sin \alpha\cos \alpha\)
\(\Leftrightarrow 1+\sin \beta=(\cos \alpha+\sin \alpha)^2\) (đpcm)
C A B H
Gọi AH là đường cao của tam giác ABC như hình vẽ
ta có : \(AH=AC\times sinC=b.sinC\)
mà \(S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}AC.BC.sinC=\frac{1}{2}ab.sinC\)
.b hoàn toàn tương tự ta có thể chứng minh :
\(S_{ABC}=\frac{1}{2}ab.sinC=\frac{1}{2}bc.sinA=\frac{1}{2}ac.sinB\)
hay \(abc.\frac{sinC}{c}=abc.\frac{sinA}{a}=abc.\frac{sinB}{b}\)
hay ta có : \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)
1. \(\frac{cos\alpha+sin\alpha}{cos\alpha-sin\alpha}=\frac{1+\frac{sin\alpha}{cos\alpha}}{1-\frac{sin\alpha}{cos\alpha}}=\frac{1+\frac{1}{2}}{1-\frac{1}{2}}=3\)
2. \(cos\beta=2sin\beta\Rightarrow cos^2\beta=4sin^2\beta\). Do \(cos^2\beta+sin^2\beta=1\Rightarrow5sin^2\beta=1\Rightarrow sin\beta=\frac{1}{\sqrt{5}}\)
\(\Rightarrow cos\beta=\frac{2}{\sqrt{5}}\). Vậy \(sin\beta.cos\beta=\frac{2}{5}\)
3. a. Nhân chéo ra được hệ thức \(sin^2\alpha+cos^2\alpha=1\)
b. Chú ý \(cot^2\alpha=\frac{cos^2\alpha}{sin^2\alpha}\)
Kẻ đg cao BH
a) + \(sinA=\frac{BH}{AB}=\frac{BH}{c}\)
+ \(S_{ABC}=\frac{1}{2}BH\cdot AC=\frac{BH\cdot AC\cdot AB}{2AB}\)
\(=\frac{bc\cdot sinA}{2}\)
b) + \(sinC=\frac{BH}{BC}=\frac{BH}{a}\)
\(\Rightarrow\frac{sinA}{sinC}=\frac{\frac{BH}{c}}{\frac{BH}{a}}=\frac{a}{c}\Rightarrow\frac{a}{sinA}=\frac{c}{sinC}\)
+ Tương tự : \(\frac{a}{b}=\frac{sinA}{sinB}\Rightarrow\frac{a}{sinA}=\frac{b}{sinB}\)
Do đó: \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)