\(\Delta ABC\) có 3 đường phân giác \(AD,BE,CF\) cắt nhau...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2017

A C B M N I

Qua I vẽ đường thẳng vuông góc với CI cắt AC. BC lần lượt tại M, N. Khi đó CM=CN, IM=IN.

Ta chứng minh được \(\widehat{AIB}=180-\widehat{BAI}-\widehat{ABI}=180-\frac{BAC}{2}-\frac{ABC}{2}=\frac{360-\left(ABC+BÃC\right)}{2}\)

\(=\frac{360-180+ACB}{2}=90+\frac{ACB}{2}\)

\(AMI=180-CMN=180-\frac{180-ACB}{2}=\frac{360-180+ACB}{2}=90+\frac{ACB}{2}\)

Chứng minh tương tự ta cũng có: \(BNI=90+\frac{ACB}{2}\)

Từ đó suy ra: \(\Delta AIB\infty\Delta AMI\left(g.g\right)\Rightarrow\frac{AI}{AM}=\frac{AB}{AI}\Rightarrow AI^2=AB.AM\Rightarrow\frac{AI^2}{AB.AC}=\frac{AM}{AC}\) 

\(\Delta AIB\infty\Delta INB\left(g.g\right)\Rightarrow\frac{BI}{IN}=\frac{AB}{BN}\Rightarrow BI^2=AB.BN\Rightarrow\frac{BI^2}{AB.BC}=\frac{BN}{BC}\)

\(\Delta AMI\infty\Delta INB\Rightarrow\frac{AM}{IN}=\frac{IM}{BN}\Rightarrow AM.BN=IM.IN=IM^2\)

Áp dụng định lí Py- ta-go vào tam gác ICM ta có:

\(IM^2+CI^2=CM^2\Rightarrow BN.AM+CI^2=CM.CN\Rightarrow BN.AM+CN.AM+CI^2=CM.CN+CN.AM\)

\(\Rightarrow BC.AM+CI^2=CN.AC\Rightarrow BC.AM+CI^2+AC.BN=CN.AC+AC.BN\)

\(\Rightarrow BC.AM+BN.AC+CI^2=AC.BC\Rightarrow\frac{AM}{AC}+\frac{BN}{BC}+\frac{CI^2}{AC.BC}=1\)

\(\Rightarrow\frac{AI^2}{AB.AC}+\frac{BI^2}{BA.BC}+\frac{CI^2}{CA.CB}=1\)

21 tháng 1 2019

đề bài có chút sai xót, sửa lại là

b) \(\frac{AM}{BN}=\left(\frac{AI}{BI}\right)^2\)

20 tháng 6 2017

Áp dụng tính chất đường phân giác trong tam giác ta có :\(\frac{IA}{ID}=\frac{AC}{CD}\)

Mà \(\frac{AC}{CD}=\frac{AB}{BD}\)  \(\frac{\Rightarrow IA}{ID}=\frac{AC}{CD}=\frac{AB}{BD}=\frac{AC+AB}{CD+BD}=\frac{AC+AB}{BC}\)

20 tháng 6 2017

thks bạn nhiều

3 tháng 3 2018

kết bạn mình nghe

  
  
  
31 tháng 5 2018

bài 1 

\(K=x^2+x+1=x^2+2\cdot\frac{1}{2}x+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>=\frac{3}{4}\)

dấu = xảy ra khi \(\left(x+\frac{1}{2}\right)^2=0\Rightarrow x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\)

vậy min của K là 3/4 tại x=-1/2

bài 2

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2ac+2bc=0^2=0\)

\(\Rightarrow2+2ab+2ac+2bc=0\Rightarrow2ab+2ac+2bc=-2\Rightarrow ab+ac+bc=-1\)

\(\left(ab+ac+bc\right)^2=a^2b^2+a^2c^2+b^2c^2+2a^2bc+2ab^2c+2abc^2\)

\(=a^2b^2+a^2c^2+b^2c^2+2abc\left(a+b+c\right)=a^2b^2+a^2c^2+b^2c^2=\left(-1\right)^2=1\)

\(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2=a^4+b^4+c^4+2=2^2=4\)

\(\Rightarrow a^4+b^4+c^4=2\)