\(\Delta ABC\) cân tại A.Trên cạnh AB,AC lần lượt lấy D,E sao cho AD=AE.M là trung đi...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2019

a, Xét \(\Delta ADE\) có:

\(AD=AE\left(gt\right)\)

\(\Rightarrow\Delta ADE\) cân tại A

\(\Rightarrow\widehat{D}=\widehat{E}=\frac{180^0-\widehat{A}}{2}\) (1)

Xét \(\Delta ABC\) cân tại A có:

\(\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\) (2)

Từ (1) và (2) suy ra \(\widehat{D}=\widehat{B}\) mà hai góc đang ở vị trí đồng vị nên:

\(\Rightarrow DE//BC\)

b, Ta có: \(\left\{{}\begin{matrix}AB=AD+DB\\AC=AE+EC\end{matrix}\right.\)

Mà : \(\left\{{}\begin{matrix}AD=AE\left(gt\right)\\AB=AC\left(\Delta ABCcântạiA\right)\end{matrix}\right.\) \(\Rightarrow DB=EC\)

Xét \(\Delta MBD\)\(\Delta MEC\) có:

\(DB=EC\left(cmt\right)\)

\(\widehat{B}=\widehat{C}\) ( \(\Delta ABC\) cân tại A)

\(BM=CM\) ( M là trung điểm)

\(\Rightarrow\Delta MBD=\Delta MCE\left(c-g-c\right)\)

c, Ta có: \(\Delta MDB=\Delta MEC\left(cmt\right)\)

\(\Rightarrow DM=EM\) ( 2 cạnh tương ứng)

Xét \(\Delta AMD\)\(\Delta AME\) có:

\(AD=AE\left(gt\right)\)

\(DM=EM\left(cmt\right)\)

\(AM\) là cạnh chung.

\(\Rightarrow\Delta AMD=\Delta AME\) ( c - c - c)

13 tháng 10 2019

E tự vẽ hình nha.

a: Xét ΔABC có AD/AB=AE/AC

nên DE//BC

b: Xét ΔMBD và ΔMCE có

MB=MC

\(\widehat{B}=\widehat{C}\)

BD=CE

Do đó: ΔMBD=ΔMCE

c: Xét ΔAMD và ΔAME có

AM chung

MD=ME

AD=AE

Do đó:ΔAMD=ΔAME

17 tháng 1 2016

bài nài cũng ko pit giải? lạy má

17 tháng 1 2016

- Xin lỗi bạn nha =)) Hong giải thì thôi có càn phải nói khó nghe vầy hông?

9 tháng 12 2018

câu b là \(\Delta\)MBD = \(\Delta\)MBA nha  Viết lộn =.=

9 tháng 12 2018

Sai cả đề ròi k cần làm nữa đâu sr :((

23 tháng 9 2019


A B C M D E

a) Xét \(\Delta ABM\) và \(\Delta ACM\) có :

AB = AC ( gt )

BM = CM ( M là trung điểm BC )

AM : Cạnh chung

=> \(\Delta ABM\) = \(\Delta ACM\) ( c.c.c )

b)  Ta có :  \(\Delta ABM\) = \(\Delta ACM\) ( cmt )

=> \(\widehat{AMB}\) = \(\widehat{AMC}\) ( 2 góc tương ứng )

=> \(\widehat{AMB}\) = \(\widehat{AMC}\)  = \(\frac{\widehat{BMC}}{2}\) = \(\frac {180} 2\) = 90

Hay AM \(\bot\) BC

22 tháng 10 2016

Giúp mk đi khocroi

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau