Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: ΔABC cân tại A
mà AH là đường cao
nen H là trung điểm của BC và AH là phân giác của góc BAC
=>HB=HC
2: Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
góc MAH=góc NAH
=>ΔAMH=ΔANH
=>AM=AN
=>ΔAMN cân tại A
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
A B C D M
a) Xét tam giác DAB và tam giác DAC có :
ABD = ACD ( = 900 )
AD chung
AB = AC ( gt )
=> tam giác DAB = tam giác DAC ( ch - cgv )
=> đpcm
b) Vì tam giác DAB = tam giác DAC ( chứng minh câu a )
=> BD = CD ( 2 cạnh tương ứng )
=> tam giác BDC cân tại D ( đpcm )
c) Ta có :
+) AB = AC => A thuộc đường trung trực của BC (1)
+) BM = MC => M thuộc đường trung trực của BC (2)
+) BD = CD => D thuộc đường trung trực của BC (3)
Từ (1),(2) và (3) => A, M, D thẳng hàng ( đpcm )
*Link ảnh(nếu như olm không hiện):Ảnh - by tth
a) Xét tam giác DAB và tam giác DAC có:
AB = AC (gt)
AD (cạnh chung - cũng là cạnh huyền)
\(\widehat{ABD}=\widehat{ACD}\left(=90^o\right)\) (gt)
Do vậy \(\Delta DAB=\Delta DAC\) (cạnh huyền - cạnh góc vuông)
b) \(\Delta DAB=\Delta DAC\) nên BD = CD (hai cạnh tương ứng)
Do đó \(\Delta DBC\) cân (tại D)
c) Bạn Trần Phương đã làm =))
không có biết luôn á
a) Xét ΔABH vuông tại H & ΔACH vuông tại H có:
- AB = AC (vì ΔABC cân tại A)
- AH là cạnh chung
Suy ra ΔABH = ΔACH (cạnh huyền - cạnh góc vuông)
Từ đó BH = CH (hai cạnh tương ứng)
b) Từ ΔABH = ΔACH (chứng minh trên) suy ra BM = CN (hai cạnh tương ứng)
Mà AB = AC (chứng minh trên)
Suy ra AM = AB - BM = AN = AC - CN
Trong ΔAMN có AM = AN (chứng minh trên) nên ΔAMN cân tại A
c) (Sửa đề: Chứng minh ba điểm A; H; I thẳng hàng)