\(\Delta ABC\), cân tại A và 2 đường trung tuyến BM , CN cắt nhau tại K .

CM: a...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2016

a)

ta có tam giác ABC cân tại A=> AB=AB=>1/2AB=1/2AC=> AN=NB=AM=MC

xét tam giác BNC và tam giác CMB có:

BC(chung)

B=C(tam gíac ABC cân tại A)

NB=MC(cmt)

suy ra tam giác BNC=CMB(c.g.c0

b)

theo câu a, ta có tam giác BNC và CMB(c.g.c)

suy ra góc NCB=MBC suy ra tam giác KCB cân tại K

23 tháng 4 2016

c)

vì giao của 3 đường trung tuyến trong tam giác ABC là K=> K là trọng tâm của tam giác

=> MK=1/2KB mà tam giác KBC cân tại K=> 1/2KB=1/2KC

trong tam giác KBC ta có bất đẳng thức tam giác: BC<KB+KC=2KM+2KM=4KM

=>4KM>BC

Câu 1:a) \(\Delta ABC\)có BD và CE là 2 đường trung tuyến và \(BD^2+CE^2=\frac{9}{4}BC^2\). C/m \(BD⊥CE\)tại G.b)\(\Delta ABC\)có BC=a, AC=b, AB=c. Hai đường trung tuyến AM và BN vuông góc với nhau tại G. C/m\(a^2+b^2=5c^2\)Câu 2: Cho \(\Delta ABC\)cân tại A có BC=a và cạnh bên bằng cạnh huyền của tam giác vuông cân có cạnh góc vuông bằng a. Tính độ dài đường trung tuyến BM của \(\Delta ABC\)theo a.Câu 3: Cho \(\Delta...
Đọc tiếp

Câu 1:

a) \(\Delta ABC\)có BD và CE là 2 đường trung tuyến và \(BD^2+CE^2=\frac{9}{4}BC^2\). C/m \(BD⊥CE\)tại G.

b)\(\Delta ABC\)có BC=a, AC=b, AB=c. Hai đường trung tuyến AM và BN vuông góc với nhau tại G. C/m\(a^2+b^2=5c^2\)

Câu 2: Cho \(\Delta ABC\)cân tại A có BC=a và cạnh bên bằng cạnh huyền của tam giác vuông cân có cạnh góc vuông bằng a. Tính độ dài đường trung tuyến BM của \(\Delta ABC\)theo a.

Câu 3: Cho \(\Delta ABC\), trung tuyến CD. Đường thẳng qua D và song song với BC cắt AC tại E. Đường thẳng qua D và song song với AC cắt BC tại F. Trên tia đối của tia BD lấy N sao cho BN=BD. Trên tia đối của tia CB lấy M sao cho CM=CF, gọi giao điểm của MD và AC là K. C/m N, F, K thẳng hàng.

Câu 4: Cho \(\Delta ABC\)có BC=2AB. Gọi M, I lần lượt là trung điểm của BC và BM. C/m AC=2AI và AM là tia phân giác của\(\widehat{CAI}\).

Câu 5: Cho \(\Delta ABC\),trung tuyến BM. Trên tia BM lấy 2 điểm G và K sao cho \(BG=\frac{2}{3}BM\) và G là trung điểm BK, gọi N là trung điểm KC , GN cắt CN tại O. C/m: \(GO=\frac{1}{3}BC\)  

(Bạn giải được câu nào thì giải, nhớ vẽ hình và ghi lời giải đầy đủ) 

0
21 tháng 6 2018

Bài 1:

Gọi M là trung điểm của BC

Vẽ BE là tia phân giác của góc B, E  thuộc AC

nối M với E

ta có: BM =CM  = 1/2.BC ( tính chất trung điểm)

AB=1/2.BC (gt)

=> BM = CM=  AB ( =1/2.BC)

Xét tam giác ABE và tam giác MBE

có: AB = MB (chứng minh trên)

góc ABE = góc MBE (gt)

BE là cạnh chung

\(\Rightarrow\Delta ABE=\Delta MBE\left(c-g-c\right)\)

=> góc BAE = góc BME = 90 độ ( 2 cạnh tương ứng)

=> góc BME = 90 độ

\(\Rightarrow BC\perp AM⋮M\)

Xét tam giác BEM vuông tại M và tam giác CEM vuông tại M

có: BM=CM(gt)

EM là cạnh chung

\(\Rightarrow\Delta BEM=\Delta CEM\left(cgv-cgv\right)\)

=> góc EBM = góc ECM ( 2 cạnh tương ứng)

mà góc EBM = góc ABE = 1/2. góc B (gt)

=> góc EBM = góc ABE = góc ECM

Xét tam giác ABC vuông tại A
có: \(\widehat{B}+\widehat{ECM}=90^0\) ( 2 góc phụ nhau)

=> góc EBM + góc ABE + góc ECM = 90 độ

=> góc ECM + góc ECM + góc ECM = 90 độ

=> 3.góc ECM = 90 độ

góc ECM = 90 độ : 3

góc ECM = 30 độ

=> góc C = 30 độ

29 tháng 4 2017

a/ Ta có: tg ABC cân tại A

mà BM, CN là trung tuyến tg ABC

=> BM = CM

Xét tg BMC và tg CNB

Có: BC chung

góc NBC = góc MCB ( tg ABC cân tại A)

BM = CM (cmt)

=> tg BMC = tg CNB ( c-g-c)

Ta có: tg ABC cân tại A

mà BM, CN trung tuyến tg ABC

=> AM= AN

Xét tg AMN:

Có: AM= AN (cmt)

=> tg AMN cân tại A

Xét tg AMN cân tại A(cmt)

Có: góc ANM = (180 độ - góc NAM)/2 ( định lí)

Xét tg ABC cân tại A (gt)

Có góc ABC = (180 độ - góc BAC)/2 ( định lí)

=> góc ANM = góc ABC ( =180 độ - BAC)/2)

=> NM//BC ( 2 góc đồng vị bằng nhau)


A B C M N G

29 tháng 4 2017

c/ Vì trong tg cân, đường trung tuyến xuất phát từ đỉnh đối diện với cạnh đáy đồng thời là đường trung trực ứng với cạnh đáy nên AG vuông góc MN

a: Xét ΔABC có

BM là đường trung tuyến

CN là đường trung tuyến

BM cắt CN tại G

DO đó:G là trọng tâm

=>BG=2/3BM; CG=2/3CN

\(BM+CN=\dfrac{2}{3}BG+\dfrac{2}{3}CG>\dfrac{2}{3}BC\)

b: BM=CN nên GB=GC

mà AB=AC
nên AG là đường trung trực của BC

=>AG\(\perp\)BC

a: Xét ΔAMN có AM=AN

nên ΔAMN cân tại A

b: Xét ΔNBC va ΔMCB có 

NB=MC

\(\widehat{NBC}=\widehat{MCB}\)

BC chung

Do đó; ΔNBC=ΔMCB

Suy ra: \(\widehat{ICB}=\widehat{IBC}\) và NC=MB

hay ΔIBC cân tại I

=>IB=IC

Ta có: IN+IC=CN

IM+IB=MB

mà CN=MB

và IB=IC

nên IN=IM

Xét ΔAMI và ΔANI có 

AM=AN

IM=IN

AI chung

Do đó: ΔAMI=ΔANI

c: Ta có: AB=AC

IB=IC

Do đó: AI là đường trung trực của BC

=>E là trung điểm của BC

=>BE=BC/2=8(cm)

\(AE=\sqrt{10^2-8^2}=6\left(cm\right)\)

AI=2/3AE=4(cm)