\(\Delta ABC\) cân tại A. Kẻ \(AM\perp BC\) tại M

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2017

XÉT TAM GIÁC ABM VÀ TAM GIÁC ACM CÓ

AM LÀ CẠNH CHUNG

AB=AC (VÌ TAM GÁC ABC CÂN TẠI A)

\(\widehat{B}=\widehat{C}\)

=>TAM GIÁC ABM=TAM GIÁC ACM (CGC)

=>MB=MC(CT Ư)

B;TA CÓ MB=MC (TMT)

=>MB+MC=24

=>MB=MC=24/2=12

TA CÓ TAM GIÁC ABM VUÔNG TẠI M

=>\(AB^2=BM^2+AM^2\)\

=>\(AM^2=AB^2-BM^2=>AM^2=20^2-12^2\)

=>\(AM^2=256=>AM=16\)

C;XÉT TAM GIÁC AKM VÀ TAM GIÁC AHM CÓ

AM LÀ CẠNH CHUNG

\(\widehat{H}=\widehat{K}=90^0\)

\(\widehat{A}\)CHUNG

=> TAM GIÁC AHM=TAM GIÁC AKM (GCG)

=>AH=AK=>\(\Delta AHK\) CÂN TẠI A

D;TỰ LÀM

29 tháng 4 2018

A B C M 1 2 1 2 20cm 24cm H K 1 2 1 2 3 4

a) Xét 2 tam giác vuông ABM và ACM có:

        \(\widehat{B}\)=\(\widehat{C}\)( do tam giác ABC cân tại A )

        AB = AC ( do tam giác ABC cân tại A )

   Vậy tam giác ABM = tam giác ACM ( ch-gn)

\(\Rightarrow\)MB = MC

b) Ta có: BM=MC

Mà BM + MC= BC \(\Rightarrow\)BM= MC= \(\frac{BC}{2}\)\(\frac{24}{2}\)=6cm

Tam giác ABM vuông tại M

Áp dụng định lí Py-ta-go ta có:

   AB = AM2 + MB2

    \(20^2\) = AM2 + \(6^2\)

AM2 = \(20^2\)\(6^2\)

AM= 364

AM = \(\sqrt{364}\)

mk bt làm câu a, b thôi. Thông Cảm nha ^^

17 tháng 3 2018

A B C H K P M

a) xét △ABM và △ ACM có

AB=AC ( △ABC cân tại A)

\(\widehat{B}=\widehat{C}\)( △ABC cân tại A)

BM=MC (gt)

=> △ABM = △ ACM (c.g.c)(đpcm)

b) xét △HBM và △ HCM có

\(\widehat{H}=\widehat{K}\left(=90^0\right)\)

BM=MC

\(\widehat{B}=\widehat{C}\) ( △ABC cân tại A)

=> △HBM = △ HCM (ch-gn)

=> HB=HC (2 cạnh tương ứng ) (đpcm)

c) +vì △HBM = △ HCM ( theo b)

=> \(\widehat{HMB}=\widehat{KMC}\)(2 góc tương ứng )

VÌ + BP ⊥ AC (gt)

+ MK ⊥ AC (gt)

=> BP // MK (qh từ vuông góc đến // )

=> \(\widehat{BIM}=\widehat{KIM}\) (slt)

ta có

\(\widehat{BIM}+\widehat{HMB}+\widehat{IBM}=180^0\)(đl tổng 3 góc trong △)

\(\widehat{HMB}+\widehat{IMK}+\widehat{KMC}=180^0\)(kề bù )

\(\widehat{HMB}\) chung

\(\widehat{BIM}=\widehat{IMK}\left(cmt\right)\)

=> \(\widehat{IBM}=\widehat{KMC}\)

\(\widehat{KMC}=\widehat{IMB}\) (cmt)

=> \(\widehat{IBM}=\widehat{IMB}\)

=> △ IBM cân tại I (đpcm)

18 tháng 3 2021

a/

Xét tg ABM và tg ACM có

MB=MC (đề bài)

AB=AC (Do tg ABC cân tại A)

\(\widehat{ABC}=\widehat{ACB}\) (Do tg ABC cân tại A)

=> tg ABM=tg ACM (c.g.c)

Ta có MB=MC => AM là trung tuyến của tg ABC => \(AM\perp BC\) (trong tg cân đường trung tuyến đồng thời là đường cao)

b/

Xét tg vuông BME và tg vuông CMF có

MB=MC

\(\widehat{ABC}=\widehat{ACB}\)

=> tg BME = tg CMF (hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau) => ME=MF => tg EMF cân tại M

c/

Do \(AM\perp BC\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)

Do tg BME = tg CMF \(\Rightarrow\widehat{BME}=\widehat{CME}\)

\(\Rightarrow\widehat{AME}=\widehat{AMF}\) (cungf phụ với \(\widehat{BME}\) = \(\widehat{CMF}\) )

=> AM là phân giác của \(\widehat{FME}\Rightarrow AM\perp EF\)  (Trong tg can EMF đường phân giác đồng thời là đường cao)

Mà \(AM\perp BC\)

=> EF//BC (cùng vuông góc với AM)

Trả lời:

P/s: Học kém Hình nên chỉ đucợ mỗi câu a

a,  +Xét tam giác ABM và ACM có:
  AB=AC(Giả thiết)  --
  AM là cạnh chung)  I  =>tam giác ABM=ACM (C-C-C)

                                     ~Học tốt!~

23 tháng 9 2019


A B C M D E

a) Xét \(\Delta ABM\) và \(\Delta ACM\) có :

AB = AC ( gt )

BM = CM ( M là trung điểm BC )

AM : Cạnh chung

=> \(\Delta ABM\) = \(\Delta ACM\) ( c.c.c )

b)  Ta có :  \(\Delta ABM\) = \(\Delta ACM\) ( cmt )

=> \(\widehat{AMB}\) = \(\widehat{AMC}\) ( 2 góc tương ứng )

=> \(\widehat{AMB}\) = \(\widehat{AMC}\)  = \(\frac{\widehat{BMC}}{2}\) = \(\frac {180} 2\) = 90

Hay AM \(\bot\) BC