Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3
a) Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E có
AB=AC( vì tam giác ABC cân tại A)
Góc A chung
=> Tam giác ABD= tam giác ACE ( cạnh huyền- góc nhọn)
b) Có tam giác ABD= tam giác ACE( theo câu a)
=> AE=AD ( 2 cạnh tương ứng)
=> Tam giác AED cân tại A
c) Xét các tam giác vuông AEH và ADH có
Cạnh huyền AH chung
AE=AD
=> Tam giác AEH=tam giác ADH ( cạnh huyền- cạnh góc vuông)
=>HE=HD
Ta có AE=AD và HE=HD hay AH là đường trung trực của ED
d) Ta có AB=AC, AE=AD
=>AB-AE=AC-AD
=>EB=DC
Xét tam giác EBC vuông tại E và tam giác DCK vuông tại D có
BD=DK
EB=Dc
=> tam giác EBC= tam giác DCK ( 2 cạnh góc vuông)
=> Góc ECB= góc DEC ( 2 góc tương ứng)
Bài 1:
Xét tam giác ABM và tam giác ACM có:
AB=AC(tam giác ABC cân tại A)
BM=MC(gt)
AM cạnh chung
Suy ra tam giác ABM= tam giác ACM (c-c-c)
b) Xét hai tam giác vuông MBH và MCK có:
BM=MC(gt)
góc ABC=góc ACB (tam giác ABC cân tại A)
Suy ra tam giác MBH= tam giác MCK (ch-gn)
Suy ra BH=CK
c) MK vuông góc AC (gt)
BP vuông góc AC (gt)
Suy ra MK sông song BD
Suy ra góc B1= góc M2 (đồng vị)
Mà M1=M2(Tam giác HBM= tam giác KCM)
Suy ra góc B1= góc M1
Suy ra tam giác IBM cân
xong bài 1 đẻ bài 2 mình nghĩ tiếp
a: Xét ΔABD và ΔKBD có
BA=BK
góc ABD=góc KBD
BD chung
Do đó: ΔABD=ΔKBD
Suy ra: DA=DK
b: Ta có: ΔBAD=ΔBKD
nên góc BKD=góc BAD=90 độ
=>DK vuông góc với BC
=>DK//AH
Câu 1 :
A B C H K
a) Xét \(\Delta AHC,\Delta KHC\) có:
\(\widehat{CAH}=\widehat{CKH}\left(=90^{^O}\right)\)
\(CH:Chung\)
\(\widehat{ACH}=\widehat{KCH}\) (CH là tia phân giac của \(\widehat{C}\))
=> \(\Delta AHC=\Delta KHC\) (cạnh huyền - góc nhọn) (*)
b) Từ (*) suy ra :
\(AC=CK\) (2 cạnh tương ứng)
Xét \(\Delta AKC\) có :
\(AC=CK\left(cmt\right)\)
=> \(\Delta AKC\) cân tại A (đpcm)
D E F 10 24 26
Xét \(\Delta DEF\) có :
\(DF^2=EF^2-DE^2\) (Định lí PITAGO đảo)
=> \(DF^2=26^2-10^2\)
=> \(DF^2=576^{ }\)
=> \(DF=\sqrt{576}=24\)
Mà theo bài ra : \(DF=24\left(cm\right)\)
Do đó , \(\Delta DEF\) là tam giác vuông
a, Xét tam giác ABC vuông tại A có:
AB2+AC2=BC2 ( định lý py-ta-go)
mà AB=9 cm(gt),AC=12cm(gt)nên:
92+122=BC2
=>BC2=81+144
=>BC2=225
=>BC2=152
=>BC=15(cm)
b, Xét tam giác ABD và tam giác MBD có:
ABD=MBD(vì BD là tia phân giác)
BD chung
\(\widehat{BAD}=\widehat{BMD}\left(=90^{ }\right)\)
=> tam giác ABD= tam giác MBD ( cạnh huyền góc nhọn )
Ta có CE vuông góc AB (GT)
suy ra CE là đường cao (1)
Ta có BD vuông góc AC(GT)
suy ra BD là đường cao (2)
Mà BD giao CE tại H
Từ (1) và (2) suy ra H là trực tâm (định nghĩa )
suy ra AM vuông góc BC (1)
Ta có tam giác ABC cân tại A (GT)
suy ra AB=AC (định nghĩa )
Ta có AM vuông góc BC (CMT)
suy ra góc AMB = góc AMC = 90
Xét tam giác AMB và tam giác AMC có
AM chung
góc AMB = góc AMC =90
AB= AC(CMT)
suy ra tam giác AMB = tam giác AMC (ch-cgv)
suy ra M là trung điểm BC (2)
Từ (1) và (2) suy ra AM là đường trung trực của BC
OK rồi đó
\(\widehat{ABC}+\widehat{ACB}=180^0-60^0=120^0\)
=>\(\widehat{OBC}+\widehat{OCB}=60^0\)
=>\(\widehat{BOC}=120^0\)
=>\(\widehat{DOE}=120^0\)
bn tự vẽ hình nhé
Giải
a, Vì BD \(\perp\) AC tại D ( gt ) => \(\Delta\) ABD là \(\Delta\) vuông tại D
CE \(\perp\)AB => \(\Delta\) ACE là tam giác vuông tại E
Xét tam giác VUÔNG ABD và tam giác vuông ACE, có :
AB = AC ( tam giác ABC cân tại A )
góc BAC chung
\(\Rightarrow\)\(\Delta\)ABD = \(\Delta\) ACE ( cạnh huyền - góc nhọn )
b, Có : AD = AE ( \(\Delta\) ABD = \(\Delta\) ACE )
\(\Rightarrow\)\(\Delta\)AED cân tại A ( ĐN )
c, Xét \(\Delta\) vuông AEH và \(\Delta\) vuông ADH, có :
AH chung
AE = AD ( cmt )
\(\Rightarrow\)\(\Delta\)vuông AEH = \(\Delta\)vuông ADH ( cạnh huyền - cạnh góc vuông )
\(\Rightarrow\)EH = DH ( 2 cạnh tương ứng )
Ta có : AE = AD ( cmt ) \(\Rightarrow\)A nằm trên đường trung trực của ED ( ĐL đảo)
EH = DH( cmt ) \(\Rightarrow\) H nằm trên đường trung trực của ED ( ĐL đảo )
Từ 2 điều trên \(\Rightarrow\) AH là đường trung trực của ED ( đpcm )