Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tự kẻ hình
a) xét tam giác BEC và tam giác CDB có
BC chung
BEC=CDB(=90 độ)
ABC=ACB( tam giác ABC cân A)
=> tam giác BEC= tam giác CDB(ch-gnh)
=> BD=CE( hai cạnh tương ứng)
b) từ tam giác BEC= tam giác CDB=> DBC=ECB(hai góc tương ứng)
=> tam giác HBC cân H
c) đặt O là giao điểm của AH với BC
vì AH,BD,CE cùng giao nhau tại H mà BD, CE là đường cao=> AH là đường cao ( 3 đường cao cùng đi qua một điểm)
vì HBC cân H=> HB=HC
xét tam giác HOB và tam giác HOC có
HB=HC(cmt)
HBO=HCO(cmt)
HOB=HOC(=90 độ)
=> tam giác HOB= tam giác HOC(ch-gnh)
=> BO=CO( hai cạnh tương ứng)
=> AH là trung trực của BC
d) xét tam giác CDB và tam giác CDK có
BD=DK(gt)
CDB=CDK(=90 độ)
DC chung
=> tam giác CDB= tam giác CDK(cgc)
=> CBD=CKD( hai cạnh tương ứng)
mà CBD=BCE=> CKD=BCE
a, Xét ∆ ABD và ∆ ACE có:
Góc D = góc E = 90°
AB = AC (∆ ABC cân)
Góc BAC chung
➡️∆ ABD = ∆ ACE (ch-gn)
➡️AD = AE (2 cạnh t/ư)
b, ✳️C/m AH là tia phân giác của góc BAC
Xét∆ ABC cân tại A có:
BD vuông góc với AC
CE vuông góc với AB
H là giao điểm của BD và CE
➡️H là trực tâm ∆ ABC
➡️AH vuông góc với BC
mà ∆ ABC cân tại A
➡️AH là đg cao đồng thời là đg phân giác
➡️AH là p/g góc BAC(đpcm)
✳️C/m AH là đg trung trực của ED
Xét ∆ AED cân tại A (AD = AE)
➡️AH là đg phân giác đồng thời là đg trung trực
➡️AH là đg trung trực của ED (đpcm)
c, Xét ∆ AEH và ∆ ADH có:
AE = AD (cmt)
Góc BAH = góc CAH (cmt)
AH chung
➡️∆ AEH = ∆ ADH (c.g.c)
➡️HE = HD (2 cạnh t/ư)
Xét ∆ CDH vuông tại D
➡️CH > HD
mà HE = HD (cmt)
➡️CH > HE
Còn câu d để mk nghĩ đã nhé
Câu d nè bn.
d, Vì AH là đg trung trực của EF và AH vuông góc với BC
➡️ED // BC (quan hệ từ vuông góc đến song song)
Ta có: góc FED = góc DBC (2 góc có 2 cạnh tương ứng song song)
Gọi AH giao BC tại M
Xét ∆ ABC cân tại A
➡️AH là đg cao đồng thời là trung tuyến
HM là trung tuyến của BC
Xét ∆ IBC có HM là đg cao đồng thời là trung tuyến
➡️∆ IBC cân tại I
➡️Góc DBC = góc ECB
Mà góc ECB = góc DEC (2 góc so le trong)
➡️Góc DEC = góc DBC
mà góc DBC = góc FED (cmt)
➡️Góc FED = góc DEC
➡️ED là tia phân giác góc FEC
Xét ∆ FEC có: CI là phân giác góc DCE (gt)
EI là phân giác góc FEC (cmt)
CI và EI giao nhau tại I
➡️I là tâm đg tròn nội tiếp∆ FEC
➡️FI là phân giác góc CFE
mà góc CFE vuông (EF // BD, góc BDC = 90°)
➡️Góc EFI = góc CFI = 90° ÷ 2 = 45°
Vậy góc EFI = 45°
Hok tốt nhé~
A) Xét tam giác BEC và tam giác CDB có :
\(\widehat{BEC}\)=\(\widehat{CDB}\)=\(90^0\)
\(BC\)chung
\(\widehat{EBC}\)=\(\widehat{DCB}\)( giả thiết )
\(\Rightarrow\Delta EBC=\Delta DCB\left(G-C-G\right)\)
Vậy \(BD=CE\) ( hai canh tương ứng )
B) Xét tam giác DHC và tam giác EHC có :
\(\widehat{EBH}\) =\(\widehat{DCH}\)( vì góc CDH=góc BEB ; góc EHB = góc DHC )
EB=DC ( theo phần a )
\(\widehat{HEB}\)=\(\widehat{CDH}\)=900
\(\Rightarrow\)\(\Delta EHB=\Delta DHC\left(G-C-G\right)\)
\(\Rightarrow BB=HC\)( HAI CẠNH TƯƠNG ỨNG )
\(\Rightarrow\Delta BHC\)cân ( định lí tam giác cân )
C) Ta có : AB =AC ( giả thiêt )
Vậy góc A cách đều hai mút B và C
Vậy AH là đường trung trực của BC
d)Xét tam giác BDC và tam giác KDC có :
DK=DB ( GT )
CD ( chung )
suy ra tam giác BDC =tam giác KDC ( cạnh huyền - cạnh góc vuông )
\(\Rightarrow\) \(\widehat{BCD}\)=\(\widehat{KCD}\)( HAI GÓC TƯƠNG ỨNG )
Mà ta lai có góc EBC = góc BCD theo giả thiết )
\(\Rightarrow\)\(\widehat{EBC}\)=\(\widehat{EBC}\)
chúc bạn hok giỏi
Nguyễn Diệu Linh.
Cho tam giác ABC cân tại A (góc A < 90 độ). Kẻ BD vuông góc AC (D thuộc AC), CE vuông góc AB (E thuộc AB), BD và CE cắt nhau tại H. a) Chứng minh BD = CE. b) Chứng minh tam giác BHC cân. c) Chứng minh AH là đường trung trực của BC. d) Trên tia BD lấy điểm K sao cho D là trung điểm của BK. So sánh góc ECB và góc DKC - Toán học Lớp 7 - Bài tập Toán học Lớp 7 - Giải bài tập Toán học Lớp 7 | Lazi.vn - Cộng đồng Tri thức & Giáo dục
cho hình chữ nhật ABCD ,đường chéo BD.Từ A ve AH vuong goc BD(H thuocB) a)CM tam giac HAD dong dang tam giac CDB b)CM AH.BD=AD.AB c) cho BH=9cm,HD=16cm.Tinh dien h tam giac ABC.
a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
góc EBC=góc DCB
=>ΔEBC=ΔDCB
b: ΔEBC=ΔDCB
=>góc HBC=góc HCB
=>HB=HC
mà AB=AC
nên AH là trung trực của BC
Hình bạn tự vẽ nhé, mình lười.
a, Xét tam giác DBC và tam giác ECB:
BDC=CEB=90 độ (CE vuông góc với AB, BD vuông góc với AC)
BC chung
DCB=EBC(tam giác ABC cân tại A)
Suy ra : tam giác DBC =tam giác ECB(cạnh huyền- góc nhọn kề)
Suy ra: DC = EB ( 2 cạnh tương ứng )
Mà tam giác ABC cân tại A
Suy ra: AB=AC
AE+EB=AB
AD+DC=AC
Suy ra: AE=AD
b, Vì AE=AD(cmt)
Suy ra:A thuộc trunh trực ED
Xét tam giác AEH và tam giác ADH:
AH chung
AE=AD(cmt)
AEH=ADH=90 độ(CE vuông góc AB,BD vuông góc AC)
Suy ra tam giác AEH = tam giác ADH(cạnh huyền- cạnh góc vuông)
SUY RA:EH=DH( 2 cạnh tương ứng)
Suy ra :H thuộc trung trực ED
Suy ra: AH là đg trung trực ED