\(\Delta ABC\) cân tại A có đường cao AD, kẻ \(DH\perp AC\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 9 2018

Lời giải:

a)

Xét tam giác $HDC$ có $I$ là trung điểm của $HD$, $M$ là trung điểm $HC$ nên $IM$ là đường trung bình của tam giác ứng với cạnh $DC$

\(\Rightarrow IM\parallel DC\)

\(AD\perp BC\) (gt) hay \(AD\perp DC\)

Do đó: \(IM\perp AD\) (đpcm)

b)

Xét tam giác $ADM$ có \(MI\perp AD; DI\perp AM\) . $I$ là giao điểm của 2 đường cao trong tam giác nên $I$ là trực tâm.

Theo tính chất 3 đường cao đồng quy tại một điểm suy ra $AI$ cũng là đường cao của tam giác $ADM$

\(\Rightarrow AI\perp DM\) (đpcm)

AH
Akai Haruma
Giáo viên
27 tháng 9 2018

Hình vẽ

Violympic toán 8

24 tháng 9 2019

a, tam giác ABC cân tại A (gt)

=> góc B = góc C (đl)

xét tam giác HBD và tam giác KCE có : BD = CE (gt)

góc BHD = góc EKC = 90 do DH _|_ AB; EK _|_ AC (gt)

=> tam giác HBD = tam giác KCE (ch-gn)

2 tháng 2 2021

Bổ sung hình vẽ

10 tháng 8 2019

a,Xét \(\Delta\)AHB và AHD có:AH chung

                                   BH=HD(gt)

                                   AHB=AHD=90

vậy tam giác AHB= tam giác AHC

b,Tam giác ABD đều ms đúng chứ ạ bạn xem lại đề nha

Theo câu a ta có tam giác AHB =tam giác AHD nên AB=AD(2 cạnh tương ứng)

Xét tam giác ABD có AB=AD suy ra tam giác ABD cân mà góc ABD =60 độ(cái này bạn tự tính nha)

suy ra tam giác ABD đều

c,Dễ thấy được tam giác ADC cân tại D nên AD=DC

Xét tam giác AHD và tam giác CED có:

        AD=DC

        HDA=EDC(2 góc đối đỉnh)

        AHD=CED=90

nên tam giác AHD=tam giác CED(ch-gn)

suy ra HD=DE mà theo câu a tam giác AHB=AHD nên HD=HB

vậy HB=DE(đpcm)

d, I là giao điểm của CE và AH chứ bạn

Xét tam giác AIC có : AE vuông góc với IC

                                CH vuông góc với IA

                           mà CH cắt AE tại D

nên D là trực tâm của tam giác IAC

hay ID vuống góc với AC

mặt khác DF vuông góc với AC

nên I ,D,F thẳng hàng

Chúc bạn học tốt

a,Xét \(\Delta AHB\)và \(\Delta AHD\)

AH chung

HB=HD

\(\widehat{AHB}=\widehat{AHD}\left(=90^0\right)\)

=> \(\Delta AHB\)=\(\Delta AHD\)

b, xem lại đề

c, Vì \(\widehat{C}=30^0\Rightarrow\widehat{B}=30^0\Rightarrow\widehat{BAD}=60^0\)

\(\Rightarrow\widehat{DAC}=30^0\)

\(\Rightarrow\Delta DAC\)cân tại D

\(\Rightarrow DA=DC\)

Từ đó ta chứng minh được \(\Delta HAD=\Delta ECD\)

\(\Rightarrow HD=DE=BH\)(ĐPCM)

d,Xem lại đề

Chúc học tốt!!!!!! :)