Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi H là hình chiếu của A trên tam giác, suy ra H là trung điểm BC.
\(AH=d\left(A,BC\right)=\dfrac{9}{\sqrt{2}}\)
A B C h d
Từ giả thiết suy ra \(\overrightarrow{AB}=\left(1;4\right)\Rightarrow AB=\sqrt{26}\) và đường thẳng AB có phương trình tổng quát :
\(5x-y-7=0\)
Vì tam giác ABC có \(AB=\sqrt{26}\) và diện tích \(S=8\) nên bài toán quy về tìm điểm \(C\in d:2x+y-2=0\) sao cho \(d\left(C;Ab\right)=\frac{16}{\sqrt{26}}\)
Xét điểm \(C\left(x;2\left(1-x\right)\right)\in d\) ta có :
\(d\left(C;AB\right)=\frac{16}{\sqrt{26}}\Leftrightarrow\frac{\left|5x-2\left(1-x\right)-7\right|}{\sqrt{26}}=\frac{16}{\sqrt{26}}\)
Giải phương trình thu được \(x=-1\) hoặc \(x=\frac{25}{7}\)
Do đó tìm được 2 điểm \(C_1\left(-1;4\right)\) và \(C_2\left(\frac{25}{7};-\frac{36}{7}\right)\) thỏa mãn yêu cầu đề bài
I C M A D B
Do \(\widehat{AIB}=90^0\Rightarrow\widehat{ACB}=45^0\) hoặc \(\widehat{ACB}=135^0\Rightarrow\widehat{ACD}=45^0\Rightarrow\Delta ACD\) vuông cân tại D nên DA=DC
Hơn nữa IA=IC => \(DI\perp AC\Rightarrow\) đường thẳng AC thỏa mãn điều kiện AC qua điểm M và AC vuông góc ID.
Viết phương trình đường thẳng AC : \(x-2y+9=0\)
Gọi \(A\left(2a-9;a\right)\in AC\). Do \(DA=\sqrt{2}d\left(D,AC\right)=2\sqrt{10}\) nên
\(\sqrt{\left(2a-8\right)^2+\left(a+1\right)^2}=2\sqrt{10}\Leftrightarrow a^2-6a+5=0\)
\(\Leftrightarrow\begin{cases}a=1\Rightarrow A\left(-7;1\right)\\a=5\Rightarrow A\left(1;5\right)\end{cases}\)
Theo giả thiết đầu bài \(\Rightarrow A\left(1;5\right)\)
Viết phương trình đường thẳng DB : \(x+3y+4=0\). Gọi \(B\left(-3b-4;b\right)\)
Tam giác IAB vuông tại I nên : \(\overrightarrow{IA.}\overrightarrow{IB}=0\Leftrightarrow3\left(-3b-2\right)+4\left(b-1\right)=0\Leftrightarrow b=-2\Rightarrow B\left(2;-2\right)\)
Đáp số \(A\left(1;5\right);B\left(2;-2\right)\)
B A K H C E I D
Ta có \(\widehat{AHC}=\widehat{AEC}=90^0\) nên 4 điểm A, H, C, E cùng thuộc đường tròn đường kính AC.
Gọi I là giao điểm của AC và BD
Ta có \(\widehat{HIE}=2\widehat{HAE}=2\left(180^0-\widehat{BCD}\right)\)
Các tứ giác AKED, AKHB nội tiếp nên \(\widehat{EKD}=\widehat{EAD}\) và \(\widehat{BKH}=\widehat{BAH}\)
Do đó \(\widehat{HKE}=180^0-\widehat{AKD}-\overrightarrow{BKH}=180^0-\overrightarrow{EAD}-\overrightarrow{BAH}=2\overrightarrow{HAE}=2\left(180^0-\overrightarrow{BCD}\right)=\overrightarrow{HIE}\)
Vậy tứ giác HKIE nội tiếp. Do đó I thuộc đường tròn (C) ngoại tiếp tam giác HKE
- Gọi \(C\left(c;c-3\right)\in d\left(c>0\right)\Rightarrow I\left(\frac{c-2}{2};\frac{c-4}{2}\right)\)
Do I thuộc (C) nên có phương trình :
\(c^2-c-2=0\Leftrightarrow c=2\) V c=-1 (loại c=-1) Suy ra \(C\left(2;-1\right);I\left(0;-1\right)\)
- Điểm E, H nằm trên đường tròn đường kính AC và đường tròn (C) nên tọa độ thỏa mãn hệ phương trình :
\(\begin{cases}x^2+y^2+x+4y+3=0\\x^2+\left(y+1\right)^2=4\end{cases}\) \(\Leftrightarrow\begin{cases}x=0;y=-3\\x=-\frac{8}{5};y=-\frac{11}{2}\end{cases}\)
- Vì H có hoành độ âm nên \(H\left(-\frac{8}{5};-\frac{11}{5}\right);E\left(0;-3\right)\) Suy ra \(AB:x-y+1=0;BC:x-3y-5=0\)
Tọa độ B thỏa mãn \(\begin{cases}x-y+1=0\\x-3y-5=0\end{cases}\) \(\Leftrightarrow B\left(-4;-3\right)\Rightarrow\overrightarrow{BA}=\left(2;2\right);\overrightarrow{BC}=\left(6;2\right)\Rightarrow\overrightarrow{BA}.\overrightarrow{BC}=16>0\)
Vì \(\overrightarrow{AB}=\overrightarrow{DC}\Rightarrow D\left(4;1\right)\)
Vậy \(B\left(-4;-3\right);C\left(2;-1\right);D\left(4;1\right)\)
a/ \(\overrightarrow{AB}=\left(0;4\right)=4\left(0;1\right)\) ; \(\overrightarrow{AC}=\left(-3;0\right)=-3\left(1;0\right)\) ; \(\overrightarrow{CB}=\left(3;4\right)\)
\(\Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=0\Rightarrow\Delta ABC\) vuông tại A
\(\Rightarrow\) Đường tròn ngoại tiếp tam giác ABC nhận trung điểm BC là tâm và BC là đường kính
Gọi I là trung điểm BC \(\Rightarrow I\left(\frac{1}{2};2\right)\)
\(R=\frac{BC}{2}=\frac{1}{2}\sqrt{3^2+4^2}=\frac{5}{2}\)
Phương trình (C):
\(\left(x-\frac{1}{2}\right)^2+\left(y-2\right)^2=\frac{25}{4}\Leftrightarrow x^2+y^2-x-4y-2=0\)
b/ Do d song song BC nên d nhận \(\left(4;-3\right)\) là 1 vtpt
Phương trình d có dạng: \(4x-3y+c=0\)
Áp dụng định lý Pitago:
\(d\left(I;d\right)=\sqrt{R^2-\left(\frac{EF}{2}\right)^2}=\frac{3}{2}\)
\(\Rightarrow\frac{\left|4.\frac{1}{2}-3.2+c\right|}{\sqrt{4^2+\left(-3\right)^2}}=\frac{3}{2}\Leftrightarrow\left|c-4\right|=\frac{15}{2}\Rightarrow\left[{}\begin{matrix}c=\frac{23}{2}\\c=-\frac{7}{2}\end{matrix}\right.\)
Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}4x-3y+\frac{23}{2}=0\\4x-3y-\frac{7}{2}=0\end{matrix}\right.\)
Giả sử I(xI;yI) là trung điểm của AC
Vì tam giác ABC cân tại B nên BI ⊥ AC. Phương trình đường thẳng BI đi qua I(2;2) nhận làm VTPT là:
2.(x - 2) + 6.(y - 2) = 0 ⇔ 2x - 4 + 6y - 12 = 0 ⇔ 2x + 6y - 16 = 0 ⇔ x + 3y - 8 = 0
Tọa độ giao điểm B của BI và d là nghiệm của hệ phương trình:
Phương trình đường thẳng AB đi qua A(1;-1) nhận làm VTPT là:
23.(x - 1) - 1.(y + 1) = 0 ⇔ 23x - 23 - y - 1 = 0 ⇔ 23x - y - 24 = 0
⇒ a = 23; b = -1
Phương trình đường thẳng BC đi qua C(3;5) nhận làm VTPT là:
19.(x - 3) + (-13).(y - 5) = 0 ⇔ 19x - 57 - 13y + 65 = 0 ⇔ 19x - 13y + 8 = 0
⇒ c = 19; d = -13
⇒ a.b.c.d = 23.(-1).19.(-13) = 5681
Vậy a.b.c.d = 5681.