\(\Delta ABC\), các đường thẳng trung trực của AB và AC cắt nhau tại O và cắt BC lần...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2018

a, Xét ∆ ABC có đg ttrực của AB và AC giao nhau tại O

➡️O là tâm đg tròn ngoại tiếp ∆ ABC 

➡️AO là đg ttrực của BC (đpcm)

b, Gọi giao điểm của AO là BC là H.

Xét ∆ ABC cân tại A

➡️AO là đg ttrực đồng thời là đg phân giác

➡️Góc BAO = góc CAO = góc BAC ÷ 2 = 120° ÷ 2 = 60°

Vì O là tâm đg tròn ngoại tiếp ∆ ABC (cmt)

➡️OA = OB = OC

Xét ∆ ABO cân tại O (OA = OB) có góc BAO = 60° 

➡️∆ ABO đều

➡️BH là đg cao đồng thời là ttuyến

➡️BH là đg ttuyến của AC

mà E là giao của ttrực AB và ttuyến AO

➡️E là trọng tâm ∆ ABO

C/m tương tự ta có F là trọng tâm ∆ ACO (đpcm)

c, Xét ∆ ABC cân tại A

Góc ABC = góc ACB = (180° - 120°) ÷ 2 = 30°

Gọi OM và ON lần lượt là đg ttrực của AB và AC

Vì AB = AC ➡️AM = BM = AN = CN

Xét ∆ vuông BEM và ∆ CFN có:

Góc M = góc N = 90°

BM = CN (cmt)

Góc ABC = góc ACB (cmt)

➡️∆ vuông BEM = ∆ vuông CFN (ch - gn)

➡️BE = CF ( 2 cạnh t/ư) (1)

     ME = NF (2 cạnh t/ư)

Xét ∆ vuông BEM có góc ABC = 30°

➡️Góc BEM = 90° - 30° = 60°

mà góc BEM đối đỉnh với góc OEH

➡️Góc BEM = góc OEH = 60°

Xét ∆ OBE có góc EBO = góc EOB = 60° ÷ 2 = 30°

➡️∆ OBE cân tại E

➡️BE = OE

Ta có: OE + ME = OM

           OF + NF = ON

mà OM = ON, ME = NF

➡️OE = OF

Xét ∆ OEF cân tại O (OE = OF) có góc OEH = 60°

➡️∆ OEF đều

➡️OE = EF

mà OE = BE (cmt)

➡️BE = EF (2)

Từ (1) và (2) ➡️BE = EF = CF (đpcm)

Hok tốt~

P/s : ôi mỏi tay quá k mk với~

Vì E thuộc đường trung trực của đoạn thẳng AB nên EA = EB, hay tam giác EAB cân tại đỉnh E. Suy ra \(\widehat{B}=\widehat{A_1}\). Tương tự, có \(\widehat{C}=\widehat{A_2}\). Ta có:

\(\widehat{EAF}=\widehat{A}-\left(\widehat{A_1}+\widehat{A_2}\right)=\widehat{A}-\left(\widehat{B}+\widehat{C}\right)\)

Mặt khác

\(\widehat{B}+\widehat{C}=180^0-\widehat{A}=180^0-100^0=80^0\)

hong hiểubucminhhumnhonhunglolang