\(\Delta ABC\) biết \(\widehat{B}-\widehat{C}=40^o\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2020

a) Gọi số đo góc C là x (độ) (0<x<70). => Số đo góc B là x + 40 (độ).

Tổng 3 góc trong 1 tam giác là 180 độ. => Số đo góc A là 180 - (x + 40) - x = 140 - 2x (độ).

AM phân giác góc BAC. => Số đo góc BAM = Số đo góc CAM = (140 - 2x) : 2 = 70 - x (độ).

Tổng 3 góc trong tam giác AMC là 180 độ. => Số đo góc AMC = 180 - Số đo góc CAM - Số đo góc C = 180 - (70 - x) - x = 110 (độ).

Đáp số: Số đo góc AMC = 110 độ.

b) D là trung điểm BC, ED vuông góc với BC. => Tam giác EBC cân tại E. => Số đo góc EBC = Số đo góc ECB = x (độ).

Mà số đo góc ABC là (x + 40) (độ). => Số đo góc ABE = Số đo góc ABC - Số đo góc EBC = (x + 40) - x = 40 (độ).

Đáp số: Số đo góc ABE = 40 độ.

A B C M D E

12 tháng 5 2017

bài này làm được nhưng nhại đánh máy ra.... lên mạng mà search bạn ạ

12 tháng 5 2017

mình lên rồi nhưng ko có

11 tháng 4 2020

a, Xét △ABC vuông tại A có: ABC + ACB = 90o (tổng 2 góc nhọn trong △ vuông)

=> 53o + ACB = 90o

=> ACB = 37o

b, Xét △ABE vuông tại A và △DBE vuông tại D

Có: ABE = DBE (gt)

       BE là cạnh chung

=> △ABE = △DBE (ch-gn)

c, Xét △FBH và △CBH cùng vuông tại H

Có: BH là cạnh chung

       FBH = CBH (gt)

=> △FBH = △CBH (cgv-gnk)

=> BF = BC (2 cạnh tương ứng)

d, Xét △ABC vuông tại A và △DBF vuông tại D

Có: AB = BD (△ABE = △DBE)

       ABC là góc chung

=> △ABC = △DBF (cgv-gnk)

Ta có: AB + AF = BF và BD + DC = BC

Mà AB = BD (cmt) ; BF = BC (cmt)

=> AF = DC

Xét △AEF và △DEC

Có: AF = DC (cmt)

      AE = DE (△ABE = △DBE)

=> △AEF = △DEC (cgv)

=> AEF = DEC (2 góc tương ứng)

Ta có: AED + DEC = 180o (2 góc kề bù)

=> AED + AEF = 180o

=> DEF = 180o

=> 3 điểm D, E, F thẳng hàng

13 tháng 3 2019

hỏi chị google nha

13 tháng 3 2019

tao biet nhung tao khong lam ho dau

16 tháng 2 2020

a)\(\widehat{C}=\widehat{BAH}=90^O-\widehat{CAH}\)

\(\widehat{B}=\widehat{CAH}=90^O-\widehat{BAH}\)

b)Ta có:

\(\widehat{ADC}=\widehat{B}+\widehat{BAD}=\widehat{B}+\frac{\widehat{BAH}}{2}=\widehat{B}+\widehat{\frac{C}{2}}\)

Lại có:

\(\widehat{DAC}=180^O-\widehat{C}-\widehat{ADC}=180^O-\widehat{C}-\left(\widehat{B}+\widehat{\frac{C}{2}}\right)=\left(90^O-\widehat{B}\right)-\frac{\widehat{C}}{2}+\left(90^O-\widehat{C}\right)\)

\(=\widehat{C}-\widehat{\frac{C}{2}}+\widehat{B}=\widehat{B}+\frac{\widehat{C}}{2}\)

Suy ra:\(\widehat{ADC}=\widehat{DAC}\)

\(\Rightarrow\Delta ADC\)cân tại C

c)\(DK\perp BC;AH\perp BC\Rightarrow DK//AH\)

\(\Rightarrow\widehat{KDA}=\widehat{DAH}\)(hai góc so le trong)

Mà \(\widehat{BAD}=\widehat{DAH}\)

\(\Rightarrow\widehat{BAD}=\widehat{KDA}\)

\(\Rightarrow\)\(\Delta KAD\)cân tại K

d)Xét \(\Delta CDK-\Delta CAK\)

\(\hept{\begin{cases}CD=CA\\KD=KA\\CA.chung\end{cases}}\)

\(\Rightarrow\Delta CDK=\Delta CAK\left(c.c.c\right)\)

\(\Rightarrowđpcm\)

e)Xét\(\Delta AID-\Delta AHD\)

\(\hept{\begin{cases}AI=AH\\AD.chung\\\widehat{DAI}=\widehat{DAH}\end{cases}}\)

\(\Rightarrow\widehat{AID}=\widehat{AHD}=90^O\)

\(\Rightarrow DI\perp AB.Mà.AC\perp AB\)

\(\Rightarrow DI//AC\)