Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C E D O
a)Xét ΔADB và ΔAEC có:
\(\widehat{ADB}=\widehat{AEC}=90^o\)
AB=AC(gt)
\(\widehat{A}\) : góc chung
=> ΔADB=ΔAEC ( cạnh huyền - góc nhọn)
=> BD=CE
b) Vì ΔADB=ΔAEC(cmt)
=> \(\widehat{ABD}=\widehat{ACE};AD=AE\)
Có: AB=AE+BE
AC=AD+DC
Mà: AB=AC(gt); AE=AD(cmt)
=>BE=DC
Xét ΔOEB và ΔODC có:
\(\widehat{OEB}=\widehat{ODC}=90^o\)
BE=DC(cmt)
\(\widehat{EBO}=\widehat{DCO}\left(cmt\right)\)
=> ΔOEB=ΔODC(g.c.g)
c) Vì: ΔOEB=ΔODC (cmt)
=> OB=OC
Xét ΔAOB và ΔAOC có:
AB=AC(gt)
\(\widehat{ABO}=\widehat{ACO}\left(cmt\right)\)
OB=OC(cmt)
=> ΔAOB=ΔAOC(c.g.c)
=> \(\widehat{OAB}=\widehat{OAC}\)
=> AO là tia pg của \(\widehat{BAC}\)

a: Xét ΔABD vuông tạiD và ΔACE vuông tại E có
AB=AC
góc BAD chung
Do đo: ΔABD=ΔACE
Suy ra: BD=CE
b: Xét ΔOEB vuông tại E và ΔODC vuông tại D có
EB=DC
\(\widehat{OBE}=\widehat{OCD}\)
Do đo: ΔOEB=ΔODC
c: Xét ΔABO và ΔACO có
AB=AC
BO=CO
AO chung
Do đó: ΔABO=ΔACO
Suy ra: \(\widehat{BAO}=\widehat{CAO}\)
hay AO là tia phân giác của góc BAC

A B C E D O
a.Xét\(\Delta ADB\)và\(\Delta AEC\)có:
\(\widehat{BDA}=\widehat{CEA}=90^o\left(gt\right)\)
\(\widehat{A}\)chung
AB=AC(gt)
=> \(\Delta ADB=\Delta AEC\)(cạnh huyền góc nhọn)
b. Theo a ta có: \(\widehat{DBE}=\widehat{DCE}\)(2 góc tương ứng)
Mà \(\widehat{B}=\widehat{C}\)( tính chất tam giác cân)
=> \(\widehat{OBC}=\widehat{OCB}\)
=> Tam giác BOC cân tại O
câu b sai đề thì phải bạn ạ
còn câu c thì mình không biết M là giao điểm của BC với cạnh nào nên không làm được

Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đo: ΔEBC=ΔDCB
Suy ra: \(\widehat{OCB}=\widehat{OBC}\)
=>ΔOBC cân tại O
=>OB=OC
mà AB=AC
nên AO là đường trung trực của BC
=>AO\(\perp\)BC

a) Xét 2 \(\Delta\) vuông \(ABD\) và \(ACE\) có:
\(\widehat{ADB}=\widehat{AEC}=90^0\)
\(AB=AC\left(gt\right)\)
\(\widehat{A}\) chung
=> \(\Delta ABD=\Delta ACE\) (cạnh huyền - góc nhọn)
=> \(BD=CE\) (2 cạnh tương ứng)
b) Ta có: \(AB=AC\left(gt\right)\)
Theo câu a) ta có \(\Delta ABD=\Delta ACE.\)
=> \(AE=AD\) (2 cạnh tương ứng)
=> \(AB-AE=AC-AD\)
=> \(BE=CD.\)
Xét 2 \(\Delta\) vuông \(OEB\) và \(ODC\) có:
\(\widehat{OEB}=\widehat{ODC}=90^0\)
\(EB=DC\left(cmt\right)\)
\(\widehat{EBO}=\widehat{DCO}\) (vì \(\Delta ABD=\Delta ACE\))
=> \(\Delta OEB=\Delta ODC\) (cạnh góc vuông - góc nhọn kề)
=> \(OB=OC\) (2 cạnh tương ứng)
c) Xét 2 \(\Delta\) \(ABO\) và \(ACO\) có:
\(AB=AC\left(gt\right)\)
\(BO=CO\left(cmt\right)\)
Cạnh AO chung
=> \(\Delta ABO=\Delta ACO\left(c-c-c\right)\)
=> \(\widehat{BAO}=\widehat{CAO}\) (2 góc tương ứng)
=> \(OA\) là tia phân giác của \(\widehat{BAC}.\)
Chúc bạn học tốt!