K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2018

a) . Xét\(\Delta ABE\) và  \(\Delta ADE\) có:

     BA = DA (gt)

     Góc BAE = góc DAE ( gt)

    AE cạnh chung

nên \(\Delta ADE\) =   \(\Delta ABE\)( c-g-c)

b) Ta có :\(\widehat{ABI}+\widehat{AIB}+\widehat{BAI}\)\(^{180^o}\)

    Suy ra : \(\widehat{AIB}\)  = \(180^o\)\(\widehat{ABI}-\widehat{BAI}\)

               \(\widehat{AID}+\widehat{DAI}+\widehat{IDA}\)=\(^{180^o}\)

    Suy ra: \(\widehat{AID}\)\(180^O\) -     \(\widehat{ADI}\)-\(\widehat{IAD}\)

   Mà \(\widehat{BAI}=\widehat{IAD}\left(gt\right)\)

         \(\widehat{ABI}=\widehat{ADI}\)(\(\Delta ABD\)cân tại A)

   \(\Rightarrow\)\(\widehat{AID}=\widehat{AIB}\)

Ta có: \(\widehat{AID}+\widehat{AIB}=180^o\)( 2 GÓC KỀ BÙ )

MÀ  \(\widehat{AID}=\widehat{AIB}\)( CHỨNG MINH TRÊN )

NÊN \(\widehat{AIB}=\widehat{AIB}=\frac{180^O}{2}=90^O\)

HAY   \(AE\perp BD\)

26 tháng 12 2018
https://i.imgur.com/K5PspHN.jpg
26 tháng 12 2018

Xin lỗi mình gửi nhầm nha bạn

a: Xét ΔAEB và ΔAEF có

AE chung

\(\widehat{BAE}=\widehat{FAE}\)

AB=AF

Do đó: ΔAEB=ΔAEF

b: Sửa đề: Chứng minh MB=MF

Ta có: ΔABE=ΔAFE

=>AB=AF

=>ΔABF cân tại A

Ta có: ΔABF cân tại A

mà AM là đường phân giác

nên M là trung điểm của BF và AM\(\perp\)BF

M là trung điểm của BF nên MB=MF

AM\(\perp\)BF tại M

=>AE\(\perp\)BF tại M

c: ta có: ΔABE=ΔAFE

=>\(\widehat{ABE}=\widehat{AFE}\)

Ta có: \(\widehat{ABE}+\widehat{DBE}=180^0\)(hai góc kề bù)

\(\widehat{AFE}+\widehat{CFE}=180^0\)(hai góc kề bù)

mà \(\widehat{ABE}=\widehat{AFE}\)

nên \(\widehat{EBD}=\widehat{EFC}\)

Ta có: AB+BD=AD

AF+FC=AC

mà AB=AF và AD=AC

nên BD=FC

Xét ΔEBD và ΔEFC có

EB=EF

\(\widehat{EBD}=\widehat{EFC}\)

BD=FC

Do đó: ΔEBD=ΔEFC

=>ED=EC

=>E nằm trên đường trung trực của DC(1)

ta có: AD=AC

=>A nằm trên đường trung trực của DC(2)

Ta có: KD=KC

=>K nằm trên đường trung trực của DC(3)

Từ (1),(2),(3) suy ra A,E,K thẳng hàng

26 tháng 1

Hay

7 tháng 12 2016

?????????????????????????????????????????????????????

12 tháng 1 2020

A B C D E F

  GT  

 △ABC: AB < AC. BAD = DAC = BAC/2 (D \in  BC)

 E \in  AC : AE = AB

 F \in  AB : AF = AC

 KL

 a, △ABD = △AED

 b, AD ⊥ FC

 c, △BDF = △EDC ; BF = EC

 d, F, D, E thẳng hàng

Bài làm:

a, Xét △ABD và △AED

Có: AB = AE (gt)

    BAD = DAE (gt) 

 AD là cạnh chung

=> △ABD = △AED (c.g.c)

b, Vì △ABD = △AED (cmt)

=> BD = ED (2 cạnh tương ứng)

=> D thuộc đường trung trực của BE   (1)

Vì AB = AE (gt) => A thuộc đường trung trực của BE   (2)

Từ (1) và (2) => AD là đường trung trực của BE

=> AD ⊥ FC

c, Vì △ABD = △AED (cmt)

=> ABD = AED (2 góc tương ứng)

Ta có: ABD + DBF = 180o (2 góc kề bù)

AED + DEC = 180o (2 góc kề bù)

Mà ABD = AED (cmt)

=> DBF = DEC

Lại có: AB + BF = AF

AE + EC = AC

Mà AB = AE (gt) ; AF = AC (gt)

=> BF = EC

Xét △BDF và △EDC

Có: BD = ED (cmt)

    DBF = DEC (cmt)

      BF = EC (cmt)

=> △BDF = △EDC (c.g.c)

d, Vì △BDF = △EDC (cmt)

=> BDF = EDC (2 góc tương ứng)

Ta có: BDE + EDC = 180o (2 góc kề bù)

=> BDE + BDF = 180o

=> FDE = 180o

=> 3 điểm F, D, E thẳng hàng

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAEBài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .a ) Chứng minh BD = DEb )...
Đọc tiếp

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :

b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC

 c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAE

Bài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .
a ) Chứng minh BD = DE

b ) Kéo dài AB và DE cắt nhau tại K. Chứng minh góc AKD bằng góc ACD .

c ) Chứng minh \(\Delta KBE=\Delta CEB\)

d ) Tìm điều kiện của tam giác ABC để DE vuông góc với AC .

Bài 7 Cho tam giác ABC , P là trung điểm của AB . Đường thẳng qua P và song song với BC cắt AC ở đường thẳng qua Q và song song với AB cắt BC ở F. Chứng minh rằng :

a ) AP = QF

b ) \(\Delta APQ=\Delta QFC\)

c ) Q là trung điểm của AC

d ) Lấy điểm I thuộc tia đối của tia QP sao cho QI = QP . Chứng minh CI // AB

Bài 8 : Cho đoạn thẳng AB . Trên hai nửa mặt phẳng đối nhau bờ AB , kẻ tia Ax và By cùng vuông góc với AB . Trên tia Ax , By lần lượt lấy hai điểm C , D sao cho AC = BD .
a ) Chứng minh AD = BC

. b ) Chứng minh AD // BC .

c ) Gọi 0 là trung điểm của AB . Trên BC lấy điểm E , trên AD lấy điểm F sao cho CE = DF . Chứng minh ( là trung điểm của EF .

 

Mình đang cần gấp ạ

 

0

a: Xét ΔABE và ΔDBE có 

BA=BD

\(\widehat{ABE}=\widehat{DBE}\)

BE chung

Do đó: ΔABE=ΔDBE

b: Xét ΔAEF vuông tại A và ΔDEC vuông tại D có 

EA=ED

AF=DC

Do đó: ΔAEF=ΔDEC

Suy ra: EF=EC

hay E nằm trên đường trung trực của CF(1)

Ta có: BF=BC

nên B nằm trên đường trung trực của CF(2)

Từ (1) và (2) suy ra BE là đường trung trực của CF

=>BE⊥CF

hay BG⊥CF