Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do M là trung điểm của EF nên ME=MF=MD(đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền)
Suy ra \(\Delta MDE\) cân tại M.
\(\Rightarrow\widehat{E}=\widehat{EDM}\)
Ta có:\(\widehat{F}=90^0-\widehat{E}\)
\(\widehat{HDE}=90^0-\widehat{E}\)
\(\Rightarrow\widehat{F}=\widehat{HDE}\)
Mà \(\widehat{MDH}=\widehat{MDE}-\widehat{HDE}\)
\(\Rightarrow\widehat{MDH}=\widehat{E}-\widehat{F}\)
b) Trên EF lấy điểm K sao cho EK=ED
Trên DF lấy điểm I sao cho DI=DH
Khi đó:\(EF-DE=EF-EK=KF\)
\(DF-DH=DF-DI=IF\)
Ta cần chứng minh \(KF>IF\),thật vậy!
Ta có:\(EK=ED\)
\(\Rightarrow\Delta EDK\) cân tại E
\(\Rightarrow\widehat{EKD}=\widehat{EDK}\)
Ta lại có:\(\widehat{EDK}+\widehat{KDI}=90^0\)
\(\widehat{EKD}+\widehat{HDK}=90^0\)
Mà \(\widehat{EKD}=\widehat{EDK}\left(cmt\right)\)
\(\Rightarrow\widehat{KDI}=\widehat{HDK}\)
Xét \(\Delta DHK\&\Delta DIK\) có:
\(DH=DI\)(theo cách chọn điểm phụ)
\(\widehat{KDI}=\widehat{HDK}\left(cmt\right)\)
\(DK\) là cạnh chung
\(\Rightarrow\Delta DHK=\Delta DIK\left(c-g-c\right)\)
\(\Rightarrow\widehat{KID}=90^0\)
\(\Rightarrow\Delta FIK\) vuông tại I
\(\Rightarrow FK>FI^{đpcm}\)
Xét \(\Delta\)ADC và \(\Delta\)HDC có: ^DAC = ^DHC = 90 độ ; DC chung ; ^ACD = ^HCD (= ^DCE )
=> \(\Delta\)ADC = \(\Delta\)HDC => DA = DH (1)
Xét \(\Delta\)DHE có: ^DHE = 90 độ => DE là cạnh huyền => DH < DE (2)
Từ (1) ; (2) => DA < DE
PHẠM NGUYỄN LAN ANH
góc B đã 90o rồi thì góc A làm sao mà vuông được nữa
đây phải là tam giác ABC vuông cân tại B chứ nhỉ
a) Xét \(\Delta ABC\) có:
\(AB=AC\left(gt\right)\)
=> \(\Delta ABC\) cân tại A.
=> \(\widehat{ABC}=\widehat{ACB}\) (tính chất tam giác cân).
b) Ta có: \(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)
Mà \(\widehat{ECK}=\widehat{ACB}\) (vì 2 góc đối đỉnh).
=> \(\widehat{ABC}=\widehat{ECK}.\)
Hay \(\widehat{DBH}=\widehat{ECK}.\)
Xét 2 \(\Delta\) vuông \(DBH\) và \(ECK\) có:
\(\widehat{DHB}=\widehat{EKC}=90^0\left(gt\right)\)
\(DB=EC\left(gt\right)\)
\(\widehat{DBH}=\widehat{ECK}\left(cmt\right)\)
=> \(\Delta DBH=\Delta ECK\) (cạnh huyền - góc nhọn).
=> \(DH=EK\) (2 cạnh tương ứng).
c) Xét 2 \(\Delta\) vuông \(DHI\) và \(EKI\) có:
\(\widehat{DHI}=\widehat{EKI}=90^0\)
\(DH=EK\left(cmt\right)\)
\(\widehat{DIH}=\widehat{EIK}\) (vì 2 góc đối đỉnh)
=> \(\Delta DHI=\Delta EKI\) (cạnh góc vuông - góc nhọn kề).
=> \(DI=EI\) (2 cạnh tương ứng).
=> \(I\) là trung điểm của \(DE\left(đpcm\right).\)
Chúc bạn học tốt!
Bài 1:
a) Sai đề rồi bạn, đáng lý ra phải là AB=AF mới đúng
Xét ΔABE vuông tại E(AD⊥BE) và ΔAFE vuông tại E(AD⊥BE,F∈BE) có
AE chung
\(\widehat{BAE}=\widehat{FAE}\)(do AE là tia phân giác của góc A)
Do đó: ΔABE=ΔAFE(cạnh góc vuông, góc nhọn kề)
⇒AB=AF(hai cạnh tương ứng)
b) Xin lỗi bạn, mình chỉ biết làm theo cách lớp 8 thôi nhé
Xét tứ giác HFKD có HF//DK(do HF//BC,D∈BC) và HF=DK(gt)
nên HFKD là hình bình hành(dấu hiệu nhận biết hình bình hành)
⇒HD//KF và HD=KF(hai cạnh đối trong hình bình hành HFKD)
c)
Xét ΔABC có AB<AC(gt)
mà góc đối diện với cạnh AB là góc C
và góc đối diện với cạnh AC là góc B
nên \(\widehat{C}< \widehat{B}\)(định lí về quan hệ giữa cạnh và góc đối diện trong tam giác)
hay \(\widehat{ABC}>\widehat{C}\)(đpcm)
\(a,\left\{{}\begin{matrix}\widehat{F}+\widehat{E}=90^0\\\widehat{HDE}+\widehat{E}=90^0\end{matrix}\right.\Rightarrow\widehat{F}=\widehat{HDE}\\ b,\left\{{}\begin{matrix}\widehat{F}+\widehat{E}=90^0\\\widehat{HDF}+\widehat{F}=90^0\end{matrix}\right.\Rightarrow\widehat{E}=\widehat{HDF}\)