Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 4 :
D E F 6 I H J
a) Xét \(\Delta DEI,\Delta DFI\) có :
\(DE=DF\) (\(\Delta DEF\) cân tại D)
\(EI=IF\)(I là trung điểm của EF)
\(DI:chung\)
=> \(\Delta DEI=\Delta DFI\left(c.c.c\right)\)
b) Ta có : \(EI=IF=\dfrac{EF}{2}=\dfrac{6}{2}=3\left(cm\right)\)
Xét \(\Delta DIE\) vuông tại I có:
\(DI^2=ED^2-EI^2\) (định lí PITAGO)
=> \(DI^2=5^2-3^2=16\)
=> \(DI=\sqrt{16}=4\left(cm\right)\)
c) Xét \(\Delta HIE,\Delta JIF\) có :
\(\widehat{IHE}=\widehat{IJF}\left(=90^{^O}\right)\)
\(EI=EF\) (I là trung điểm của EF)
\(\widehat{HEI}=\widehat{JFI}\) (Tam giác DEF cân tại D)
=> \(\Delta HIE=\Delta JIF\) (cạnh huyền -góc nhọn)
=> \(HI=HJ\) (2 cạnh tương ứng)
Do đó: \(\Delta IHJ\) cân tại H (đpcm)
d) Xét \(\Delta DHI,\Delta DJI\) có:
\(HI=IJ\) (tam giác HIJ cân tại H)
\(\widehat{DHI}=\widehat{DJI}\left(=90^o\right)\)
DI : Chung
=> \(\Delta DHI=\Delta DJI\left(c.g.c\right)\)
=> \(\Delta DHJ\)cân tại D
Ta có : \(\widehat{DHJ}=\dfrac{180^{^O}-\widehat{D}}{2}\left(1\right)\)
Xét \(\Delta DEF\) cân tại D(gt) có :
\(\widehat{DEF}=\dfrac{180^{^O}-\widehat{D}}{2}\left(2\right)\)
Từ (1) và (2) => \(\widehat{DHJ}=\widehat{DEF}\left(=\dfrac{180^o-\widehat{D}}{2}\right)\)
Mà thấy : 2 góc này ở vị trí đồng vị
=> \(HJ//EF\)
=> đpcm
A B C I 6 8 D K
a) Xét \(\Delta ABD,\Delta IBD\) có :
\(\widehat{BAD}=\widehat{BID}\left(=90^{^O}\right)\)
\(BD:Chung\)
\(\widehat{ABD}=\widehat{IBD}\) (BD là phân giác của \(\widehat{B}\) )
=> \(\Delta ABD=\Delta IBD\) (cạnh huyền - góc nhọn) (*)
b) Xét \(\Delta ABI\) có :
\(AB=BI\) [từ (*)]
=> \(\Delta ABI\) cân tại B
Lại có : BD là phân giác trong \(\Delta ABI\)
Suy ra : BD đồng thời là trung trực trong \(\Delta ABI\)
=> \(BD\perp AI\) (đpcm)
c) Xét \(\Delta ABC,\Delta IBK\) có :
\(\widehat{B}:Chung\)
\(AB=BI\) (từ *)
\(\widehat{BAC}=\widehat{BIK}\left(=90^{^O}\right)\)
=> \(\Delta ABC=\Delta IBK\) (cạnh huyền - góc nhọn)
=> \(\widehat{BCA}=\widehat{BKI}\) (2 góc tương ứng)
Xét \(\Delta BDK,\Delta BDC\) có :
\(\widehat{DBK}=\widehat{DBC}\) (BD là tia phân giac của góc B)
\(BD:Chung\)
\(\widehat{BKD}=\widehat{BCD}\) (do \(\widehat{BCA}=\widehat{BKI}\) )
=> \(\Delta BDK=\Delta BDC\left(g.c.g\right)\)
=> \(DK=DC\)(2 cạnh tương ứng)
=> đpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
Cho vuông tại A (AB < AC) . Trên tia đối của tia AB, lấy điểm E sao cho AE = AC. Trên tia đối của tia AC, lấy điểm D sao cho AD = AB.
a) Chứng minh: .
b) Vẽ AHBC tại H. Chứng minh: .
c) Tia HA cắt DC tại K. Chứng minh: K là trung điểm của DE.
d) Chứng minh: BD // CE và BD + CE = BE.
help me !! mh cần gấp
Cho vuông tại A (AB < AC) . Trên tia đối của tia AB, lấy điểm E sao cho AE = AC. Trên tia đối của tia AC, lấy điểm D sao cho AD = AB.
a) Chứng minh: .
b) Vẽ AHBC tại H. Chứng minh: .
c) Tia HA cắt DC tại K. Chứng minh: K là trung điểm của DE.
d) Chứng minh: BD // CE và BD + CE = BE.
help me !! mh cần gấp
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đề sai ! b) CM : FI \(\perp\)DE
Trên mạng có lời giải nhé ! câu lên đó tham khảo
nếu k tìm thấy, ib mik, mik sẽ đưa link
B/ ĐỀ SAI. chứng minh FI vuông góc với DE
D E F I M K
Xét tam giác EMK và tam giác FMI
có ME=MF (GT)
góc EMK = góc FMI (đối đỉnh)
MI=MK (GT)
suy ra tam giác EMK = tam giác FMI (c.g.c) (1)
b) Từ (1) suy ra góc IFE = góc KEM (2 góc tương ứng) (2)
mà góc IFE ở vị trí so le trong với góc KEM (3)
Từ(2) và (3) suy ra EK // FI (4)
mà EK \(\perp\)DE (GT) (5)
Từ (4) và (5) suy ra FI \(\perp\)DE
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét 2 \(\Delta\) \(EMK\) và \(FMI\) có:
\(EM=FM\) (vì M là trung điểm của \(EF\))
\(\widehat{EMK}=\widehat{FMI}\) (vì 2 góc đối đỉnh)
\(MK=MI\left(gt\right)\)
=> \(\Delta EMK=\Delta FMI\left(c-g-c\right).\)
b) Theo câu a) ta có \(\Delta EMK=\Delta FMI.\)
=> \(\widehat{MEK}=\widehat{MFI}\) (2 góc tương ứng).
Mà 2 góc này nằm ở vị trí so le trong.
=> \(EK\) // \(FI.\)
Lại có \(EK\perp DE\left(gt\right)\)
=> \(FI\perp DE\left(đpcm\right).\)
Chúc bạn học tốt!