K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2021

\(EF=KE+KF=2+6=8\left(cm\right)\\ \text{Áp dụng HTL: }\\ DE^2=KE\cdot EF=16\Rightarrow DE=4\left(cm\right)\\ DK^2=EK\cdot FK=12\Rightarrow DK=2\sqrt{3}\left(cm\right)\)

Áp dụng định lí Pytago vào ΔDEF vuông tại D, ta được:

\(DE^2+DF^2=EF^2\)

\(\Leftrightarrow DF^2=5^2-3^2=16\)

hay DE=4(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔDEF vuông tại D có DK là đường cao ứng với cạnh huyền EF, ta được:

\(DK\cdot FE=DE\cdot DF\)

\(\Leftrightarrow DK\cdot5=3\cdot4=12\)

hay DK=2,4(cm)

Áp dụng định lí Pytago vào ΔDKE vuông tại K, ta được:

\(DE^2=DK^2+EK^2\)

\(\Leftrightarrow EK^2=3^2-2.4^2=3.24\)

hay EK=1,8(cm)

Ta có: EK+FK=EF(K nằm giữa E và F)

nên FK=5-1,8=3,2(cm)

NV
12 tháng 7 2021

Áp dụng hệ thức lượng:

\(DE^2=EK.EF\Rightarrow EK=\dfrac{DE^2}{EF}=1,8\left(cm\right)\)

\(KF=EF-EK=3,2\left(cm\right)\)

\(DK^2=EK.KF\Rightarrow DK=\sqrt{EK.KF}=2,4\left(cm\right)\)

15 tháng 10 2020
Mọi người giúp mk với ạ!Mk sắp kiểm tra rồi😭😭
9 tháng 8 2021

bạn xem lại bài 1 nhé

Bài 2 : 

Ta có : \(\frac{AB}{BC}=\frac{3}{5}\Rightarrow AB=\frac{3}{5}BC\)

Áp dụng định lí Pytago cho tam giác ABC vuông tại A

\(BC^2=AB^2+AC^2\Rightarrow AC^2=BC^2-AB^2=BC^2-\left(\frac{3}{5}BC\right)^2\)

\(\Leftrightarrow400=\frac{16}{25}BC^2\Leftrightarrow BC^2=625\Rightarrow BC=25\)cm 

\(\Rightarrow AB=\frac{3}{5}BC=\frac{3}{5}.25=15\)cm 

Chu vi tam giác ABC là \(P_{ABC}=15+20+25=60\)cm 

17 tháng 9 2021

trong \(\Delta DEF\) vuông tại D có

\(DK^2=EK.KF\)(đlý)\(\Rightarrow KF=\dfrac{DK^2}{EK}=\dfrac{6^2}{8}\)=4,5

ta có:EF=EK+KF=8+4,5=12,5

\(DE^2=EF.EK\left(đlý\right)\)=12,5.8=100\(\Rightarrow DE=10\)

\(DF^2=EF.KF\)(đlý)=12,5.4,5=56,25\(\Rightarrow\)DF=7,5

 

 

b: Xét ΔDKE vuông tại K có KM là đường cao

nên \(DM\cdot DE=DK^2\left(1\right)\)

Xét ΔDKF vuông tại K có KN là đường cao

nên \(DN\cdot DF=DK^2\left(2\right)\)

Từ (1) và (2) suy ra \(DM\cdot DE=DN\cdot DF\)

3 tháng 11 2023

Em xem lại đề nhé. Đề sai rồi