Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔEBD và ΔFED có
\(\dfrac{DE}{DF}=\dfrac{DB}{DE}\left(=\dfrac{1}{2}\right)\)
Do đó: ΔEBD∼ΔFED(g-g)
b) Xét ΔDEF có DA là đường phân giác ứng với cạnh EF(gt)
nên \(\dfrac{AE}{AF}=\dfrac{DE}{DF}\)(Tính chất đường phân giác của tam giác)
mà \(\dfrac{DE}{DF}=\dfrac{DB}{DE}\left(=\dfrac{1}{2}\right)\)
nên \(\dfrac{AE}{AF}=\dfrac{DB}{DE}\)
hay \(AE\cdot DE=DB\cdot AF\)(đpcm)
a: Sửa đề; DA=EF
Xét tứ giác AEDF có
góc AED=góc AFD=góc FAE=90 độ
nen AEDF là hình chữ nhật
=>DA=EF
b: Xét tứ giác AFEH có
AF//HE
AF=HE
Do đó: AFEH là hình bình hành
XétΔABC có
Dlà trung điểm của BC
DE//AC
Do đó E là trung điểm của AB
Xét ΔABC có
D là trung điểm của BC
DF//AB
Do đó:F là trung điểm của AC
Xét tứ giác AHBD có
E là trung điểm chung của AB và HD
AB vuông góc với HD
Do đó: AHBD là hình thoi
=>AB là phân giác của góc HAD(1)
c: Xét tứ giác ADCI có
F là trung điểm chung của AC và DI
DA=DC
Do đó: ADCI là hình thoi
=>AC là phân giác của góc DAI(2)
Từ (1), (2) suy ra góc IAH=2*90=180 độ
=>I,A,H thẳng hàng
mà AI=AH
nên A là trung điểm của IH
a) Xét ΔDMN và ΔDEF có
\(\dfrac{DM}{DE}=\dfrac{DN}{DF}\left(=\dfrac{1}{2}\right)\)
\(\widehat{D}\) chung
Do đó: ΔDMN\(\sim\)ΔDEF(c-g-c)
b) Xét ΔEMQ và ΔEDF có
\(\widehat{EMQ}=\widehat{EDF}\)(hai góc so le trong, MQ//DF)
\(\widehat{E}\) chung
Do đó: ΔEMQ\(\sim\)ΔEDF(g-g)
mà ΔMDN\(\sim\)ΔEDF(cmt)
nên ΔMDN\(\sim\)ΔEMQ(đpcm)