K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2018

A B C K

Kẻ tia phân giác BK cắt AC tại K

\(\Rightarrow\widehat{ABK}=\widehat{CBK}=\dfrac{\widehat{ABC}}{2}\)

Mà ta có \(\widehat{B}=2\widehat{C}\)

Suy ra \(\widehat{ABK}=\widehat{KBC}=\widehat{KCB}\)

Xét △BKC có

\(\widehat{KBC}=\widehat{KCB}\)(cmt)

Suy ra △BKC cân tại K\(\Rightarrow BK=KC\)

Xét △ABK và △ACB có

\(\widehat{A}\) chung

\(\widehat{ABK}=\widehat{KCB}\)(cmt)

Suy ra △ABK ∼ △ACB(g.g)

\(\Rightarrow\dfrac{AB}{AC}=\dfrac{BK}{BC}\Rightarrow AC.BK=AB.BC\Rightarrow AC.BK=8.10=80\Rightarrow AC.KC=80\left(1\right)\)

Ta có △ABK ∼ △ACB\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AK}{AB}\Rightarrow AC.AK=AB^2\Rightarrow AC.AK=8^2=64\left(2\right)\)

Cộng (1),(2)\(\Rightarrow AC.KC+AC.AK=80+64\Rightarrow AC\left(KC.AK\right)=144\Rightarrow AC.AC=144\Rightarrow AC^2=144\Rightarrow AC=12\left(cm\right)\)

b) Giả sử AC>BC>AB

Đặt AB=x(x∈N*)\(\Rightarrow BC=x+1\Rightarrow AC=x+2\)

Theo câu a, ta có △ABK ∼ △ACB

\(\Rightarrow\dfrac{AB}{AC}=\dfrac{BK}{BC}\Rightarrow AB.BC=BK.AC\Rightarrow AB.BC=KC.AC\Rightarrow x\left(x+1\right)=\left(x+2\right)KC\left(3\right)\)

ta có △ABK ∼ △ACB\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AK}{AB}\Rightarrow AB^2=AK.AC\Rightarrow x^2=\left(x+2\right)AK\left(4\right)\)

Cộng (3),(4)\(\Rightarrow x\left(x+1\right)+x^2=\left(x+2\right)KC+\left(x+2\right).AK\Leftrightarrow x^2+x+x^2=\left(x+2\right)\left(KC+AK\right)\Leftrightarrow2x^2+x=\left(x+2\right).AC\Leftrightarrow2x^2+x=\left(x+2\right)^2\Leftrightarrow2x^2+x=x^2+4x+4\Leftrightarrow x^2-3x-4=0\Leftrightarrow x^2+x-4x-4=0\Leftrightarrow x\left(x+1\right)-4\left(x+1\right)=0\Leftrightarrow\left(x+1\right)\left(x-4\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x+1=0\\x-4=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=-1\left(ktm\right)\\x=4\left(tm\right)\end{matrix}\right.\)

Vậy x=4\(\Rightarrow AB=4\Rightarrow BC=5\Rightarrow AC=6\)

4 tháng 7 2021

đặt AB = x , BC = x + 1 , AC = x + 2 , MH = a 
Xét 3 trường hợp 
Trường hợp 1 nếu góc B < 90o => BC > AC (khác đề)
Trường hợp 2 nếu góc B = 90 độ (khác đề)
Trường hợp 3 nếu góc B > 90o => AC > BC ( đúng) 
Nên ta sẽ đi xét trường hợp 3 : B > 90o ( bạn phải vẽ B > 90o nhé) 
HB = MH - BM => HB = a - (x+1)/2 => HB^2 = (a - (x+1)/2)^2 
HC = HB + BC => HC = a - x/2 + x => HC^2 = (a + (x+1)/2)^2 
Ta có AH^2 = AC^2 - HC^2 
AH^2 = AB^2 - HB^2 
=> AC^2 - HC^2 = AB^2 - HB^2 
<=> (x + 2)^2 - (a+ (x+1)/2)^2 = x^2 - (a - (x+1)/2)^2 
<=> x^2 - 4x - 4 - a^2 - ax - a - (x^2+2x+1)/4 = x^2 - a^2 + ax + a - (x^2+2x+1)/4 
<=> 2ax + 2a - 4x - 4 = 0 
<=> 2a(x+1) - 4(x+1) = 0 
<=> (x + 1).2(a - 2) = 0 
<=> x = -1 hoặc a = 2 
hay AB = -1 hoặc HM = 2 (đpcm) 

3 tháng 12 2018

Hình tự vẽ

Dễ dàng cm:AC lớn nhất.

Trên AC lấy D sao cho \(\widehat{CBD}=\widehat{CAB}\)

\(\Rightarrow\Delta BCD\sim\Delta ACB\left(g.g\right)\)

\(\Rightarrow BC^2=AC.CD=AC\left(AC-AD\right)\)(1)

Lại có:\(\widehat{B}=\widehat{A}+2\widehat{C}\)

\(\Rightarrow\widehat{DBA}=90^0-\dfrac{\widehat{A}}{2}\)

\(\Rightarrow\Delta ABD\) cân tại A

\(\Rightarrow\left(1\right)\Leftrightarrow BC^2=AC\left(AC-AB\right)\)

Đặt ẩn giải tiếp

3 tháng 12 2018

A B C cạnh AC cạnh AB cạnh BC

a) Ta có: \(\sin\widehat{ACB}=\dfrac{AB}{BC}\)

nên \(AB=\dfrac{3}{5}\cdot20=12\left(cm\right)\)

Xét ΔABC vuông tại A có 

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=20^2-12^2=256\)

hay AC=16(cm)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔCBD vuông tại B có BA là đường cao ứng với cạnh huyền CD, ta được:

\(AC\cdot AD=AB^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(BH\cdot BC=AB^2\)(2)

Từ (1) và (2) suy ra \(AC\cdot AD=BH\cdot BC\)

10 tháng 10 2021

a: Xét ΔABC vuông tại A có 

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC=8\left(cm\right)\)

hay AB=6(cm)

10 tháng 10 2021

chi tiết được không ạ

 

12 tháng 10 2021

a: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

=> AB=6cm

hay AC=8(cm)