A′B′AB=B′C′BC=C′D′CDA′B′AB=B′C′BC=C′D′CD

B) ĐẢO LẠI, CM NẾU m...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ba đường phân giác trong AM, BN, CP của tam giác ABC đồng qui tại I. a) Cm ( AP / BP ) * ( BI / NI) * ( NC / AC) = 1 b) Cm (BM / CM) * ( CI / PI) * ( PA / BA) = ( CN / AN) * ( AI / MI ) * ( MB / CB) c) Cho AB= 15, BC= 17, CA= 8. Tính IA , IB, IC. 2) Cho d' // d a) Cm ( A'B' / AB) = ( B'C' / BC) = ( C'D' // CD ) b) Đảo lại, Cm nếu m1, m2, m3, m4 cắt d, d' và ta có ( A'B' / AB) = ( B'C' / BC) = ( C'D' / CD) thì m1, m2, m3, m4, đồng qui. _ Hình vẽ như thế...
Đọc tiếp

Ba đường phân giác trong AM, BN, CP của tam giác ABC đồng qui tại I. 
a) Cm ( AP / BP ) * ( BI / NI) * ( NC / AC) = 1 
b) Cm (BM / CM) * ( CI / PI) * ( PA / BA) = ( CN / AN) * ( AI / MI ) * ( MB / CB) 
c) Cho AB= 15, BC= 17, CA= 8. Tính IA , IB, IC. 

2) Cho d' // d 
a) Cm ( A'B' / AB) = ( B'C' / BC) = ( C'D' // CD ) 
b) Đảo lại, Cm nếu m1, m2, m3, m4 cắt d, d' và ta có ( A'B' / AB) = ( B'C' / BC) = ( C'D' / CD) thì m1, m2, m3, m4, đồng qui. 
_ Hình vẽ như thế này nha : Bốn đường thẳng m1, m2 , m3, m4 cùng giao nhau tại điểm O, hai đường // d và d' cắt 4 đường này theo thứ tự : d cắt m1 tại A' , cắt m2 tại B', cắt m3 tại C', cắt m4 tại D' ; d' cắt m1 tại A, cắt m2 tại B, cắt m3 tại C, cắt m4 tại D ( đoạn d vẽ trước đoạn d' nha!) 
* MẤY BÀI NÀY LÀ TOÁN HÌNH 8 . GIẢI THEO ĐỊNH LÍ THALES VÀ TÍNH CHẤT ĐƯỜNG PHÂN GIÁC CỦA TAM GIÁC

em xin cảm ơn

0
NV
27 tháng 11 2018

\(A=\dfrac{a}{abc+ab+a+1}+\dfrac{ba}{abcd+abc+ab+a}+\dfrac{\dfrac{c}{cd}}{\dfrac{acd}{cd}+\dfrac{cd}{cd}+\dfrac{c}{cd}+\dfrac{1}{cd}}+\dfrac{\dfrac{d}{d}}{\dfrac{dab}{d}+\dfrac{ad}{d}+\dfrac{d}{d}+\dfrac{1}{d}}\)

\(A=\dfrac{a}{abc+ab+a+1}+\dfrac{ab}{1+abc+ab+a}+\dfrac{\dfrac{1}{d}}{a+1+\dfrac{1}{d}+\dfrac{1}{cd}}+\dfrac{1}{ab+a+1+\dfrac{1}{d}}\)

\(abcd=1\Rightarrow\dfrac{1}{d}=abc;\dfrac{1}{cd}=ab\)

\(\Rightarrow A=\dfrac{a}{abc+ab+a+a}+\dfrac{ab}{abc+ab+a+1}+\dfrac{abc}{a+1+abc+ab}+\dfrac{1}{ab+a+1+abc}\)

\(\Rightarrow A=\dfrac{a+ab+abc+1}{abc+ab+a+1}=1\)

14 tháng 8 2015

gt <=>(a^2+b^2+c^2+d^2-ab-bc-cd-da)*2=0

<=>a^2-2ab+b^2+b^2-2bc+c^2+c^2-2cd+d^2+d^2-2da+a^2=0

<=>(a-b)^2+(b-c)^2+(c-d)^d+(d-a)^2=0

Mà:

(a-b)>=0...

=>(a-b)^2+(b-c)^2+(c-d)^d+(d-a)^2>=0

=>(a-b)^2+(b-c)^2+(c-d)^d+(d-a)^2=0 khi a=b=c=d

Khi đó N=4/3

29 tháng 9 2019

a ) \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

Nếu : \(a+b+c=0\) thì đẳng thức trên đúng .

\(\Rightarrowđpcm\)

b ) \(a+b+c+d=0\)

\(\Rightarrow a+b=-\left(c+d\right)\Leftrightarrow\left(a+b\right)^3=-\left(c+d\right)^3\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3ab\left(a+b\right)-3cd\left(c+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3ab\left(c+d\right)-3cd\left(c+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(c+d\right)\left(cb-cd\right)\left(đpcm\right)\)

Chúc bạn học tốt !!!

29 tháng 9 2019

a ) a^3+b^3+c^3=3abca3+b3+c3=3abc

\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0⇔(a+b)3+c3−3ab(a+b)−3abc=0

\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0⇔(a+b+c)(a2+b2+c2−abbcac)=0

Nếu : a+b+c=0a+b+c=0 thì đẳng thức trên đúng .(đpcm)

b ) a+b+c+d=0a+b+c+d=0

\Rightarrow a+b=-\left(c+d\right)\Leftrightarrow\left(a+b\right)^3=-\left(c+d\right)^3⇒a+b=−(c+d)⇔(a+b)3=−(c+d)3

\Leftrightarrow a^3+b^3+c^3+d^3=-3ab\left(a+b\right)-3cd\left(c+d\right)⇔a3+b3+c3+d3=−3ab(a+b)−3cd(c+d)

\Leftrightarrow a^3+b^3+c^3+d^3=3ab\left(c+d\right)-3cd\left(c+d\right)⇔a3+b3+c3+d3=3ab(c+d)−3cd(c+d)

\Leftrightarrow a^3+b^3+c^3+d^3=3\left(c+d\right)\left(cb-cd\right)\left(đpcm\right)⇔a3+b3+c3+d3=3(c+d)(cbcd)(đpcm)

7 tháng 5 2017

a) \(a^2+b^2+c^2+d^2=ab+bc+ac+cd.\)

<=>\(2a^2+2b^2+2c^2+2d^2=2ab+2ac+2bc+2cd\)

<=>\(2a^2+2b^2+2c^2+2d^2-2ab-2bc-2ac-2cd=0\)

<=>\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)+\left(d^2-2cd+c^2\right)\)=0

<=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2+\left(d-c\right)^2=0\)

=>a=b=c=d

=> ABCD là hình thoi

26 tháng 11 2017

sai đề

26 tháng 11 2017

-_-"

tớ thấy nó cứ sao sao ý !

như kiểu là đề sai

7 tháng 6 2017

Giải:

Ta có:

\(\left(a+b+c+d\right)^2=\) \(\left[\left(a+c\right)+\left(b+d\right)\right]^2\)

\(\ge4\left(a+c\right)\left(b+d\right)\) \(=4\left(ab+bc+cd+da\right)\)\(=4\)

\(\Leftrightarrow a+b+c+d\) \(\ge2\left(a,b,c,d>0\right)\)

\(\Rightarrow\dfrac{a^3}{b+c+d}+\dfrac{b+c+d}{8}\) \(+\dfrac{b}{6}+\dfrac{1}{12}\ge\dfrac{2a}{3}\)

Tương tự ta cũng có:

\(\dfrac{b^3}{a+c+d}+\dfrac{a+c+d}{8}+\dfrac{b}{6}+\dfrac{1}{12}\) \(\ge\dfrac{2b}{3}\)

\(\dfrac{c^3}{a+b+d}+\dfrac{a+b+d}{8}+\dfrac{c}{6}+\dfrac{1}{12}\) \(\ge\dfrac{2c}{3}\)

\(\dfrac{d^3}{a+b+c}+\dfrac{a+b+c}{8}+\dfrac{d}{6}+\dfrac{1}{12}\) \(\ge\dfrac{2d}{3}\)

Cộng vế theo vế các BĐT trên ta có:

\(P\ge\dfrac{a+b+c+d}{3}-\dfrac{1}{3}\ge\) \(\dfrac{2}{3}-\dfrac{1}{3}=\dfrac{1}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=d=\dfrac{1}{2}\)

7 tháng 6 2017

undefined