Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(u_3=u_2^2-u_2+2=4\)
\(S_1=1=\left(2-1\right)^2=\left(u_2-1\right)^2\)
\(S_2=2.5-1=9=\left(4-1\right)^2=\left(u_3-1\right)^2\)
Dự đoán \(S_n=\left(u_{n+1}-1\right)^2\)
Ta sẽ chứng minh bằng quy nạp:
- Với \(n=1;2\) đúng (đã kiểm chứng bên trên với \(S_1;S_2\))
- Giả sử đẳng thức đúng với \(n=k\)
Hay \(S_k=\left(u_1^2+1\right)\left(u_2^2+1\right)...\left(u_k^2+1\right)-1=\left(u_{k+1}-1\right)^2\)
Ta cần chứng minh:
\(S_{k+1}=\left(u_1^2+1\right)\left(u_2^2+1\right)...\left(u_k^2+1\right)\left(u_{k+1}^2+1\right)-1=\left(u_{k+2}-1\right)^2\)
Thật vậy:
\(S_{k+1}=\left[\left(u_{k+1}-1\right)^2+1\right]\left(u_{k+1}^2+1\right)-1\)
\(=\left(u_{k+1}^2-2u_{k+1}+2\right)\left(u_{k+1}^2+1\right)-1\)
\(=\left(u_{k+2}-u_{k+1}\right)\left(u_{k+2}+u_{k+1}-1\right)-1\)
\(=u_{k+2}^2-u_{k+2}-u_{k+1}^2+u_{k+1}-1\)
\(=u_{k+2}^2-u_{k+2}+2-u_{k+2}-1\)
\(=\left(u_{k+2}-1\right)^2\) (đpcm)
\(limu_n=lim\dfrac{1}{n}=0\); \(limv_n=lim\left(-\dfrac{1}{n}\right)=0\).
\(limf\left(u_n\right)=lim\left(\sqrt{\dfrac{1}{n}}+1\right)=1\).
\(limf\left(v_n\right)=lim\left(2.\dfrac{-1}{n}\right)=lim\dfrac{-2}{n}=0\).
Hai dãy số \(\left(u_n\right)\) và \(\left(v_n\right)\) đều có giới hạn 0 khi n tiến ra dương vô cùng nhưng \(limf\left(u_n\right)\ne limf\left(v_n\right)\) nên f không có giới hạn tại \(x=0\).
Đề bài sai.
Với \(\left[{}\begin{matrix}u_1>2+\sqrt{2}\\u_1< -\sqrt{2}\end{matrix}\right.\) thì dãy không có giới hạn (tiến tới âm vô cực)