Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(u_3=u_2^2-u_2+2=4\)
\(S_1=1=\left(2-1\right)^2=\left(u_2-1\right)^2\)
\(S_2=2.5-1=9=\left(4-1\right)^2=\left(u_3-1\right)^2\)
Dự đoán \(S_n=\left(u_{n+1}-1\right)^2\)
Ta sẽ chứng minh bằng quy nạp:
- Với \(n=1;2\) đúng (đã kiểm chứng bên trên với \(S_1;S_2\))
- Giả sử đẳng thức đúng với \(n=k\)
Hay \(S_k=\left(u_1^2+1\right)\left(u_2^2+1\right)...\left(u_k^2+1\right)-1=\left(u_{k+1}-1\right)^2\)
Ta cần chứng minh:
\(S_{k+1}=\left(u_1^2+1\right)\left(u_2^2+1\right)...\left(u_k^2+1\right)\left(u_{k+1}^2+1\right)-1=\left(u_{k+2}-1\right)^2\)
Thật vậy:
\(S_{k+1}=\left[\left(u_{k+1}-1\right)^2+1\right]\left(u_{k+1}^2+1\right)-1\)
\(=\left(u_{k+1}^2-2u_{k+1}+2\right)\left(u_{k+1}^2+1\right)-1\)
\(=\left(u_{k+2}-u_{k+1}\right)\left(u_{k+2}+u_{k+1}-1\right)-1\)
\(=u_{k+2}^2-u_{k+2}-u_{k+1}^2+u_{k+1}-1\)
\(=u_{k+2}^2-u_{k+2}+2-u_{k+2}-1\)
\(=\left(u_{k+2}-1\right)^2\) (đpcm)
ta có : \(u_n=\frac{1+2^m}{2^m}\Rightarrow lim\left(u_n\right)=lim\left(\frac{1+2^m}{2^m}\right)=lim\left(1+\frac{1}{2^m}\right)=1\)
Hình như: \(n^2u_n=\dfrac{2.2^2.3^2...n^2}{\left(2^2-1\right)\left(3^2-1\right)...\left(n^2-1\right)}\)
Dãy số đã cho hiển nhiên là dãy dương
\(u_3=2>1\Rightarrow\) dự đoán dãy trên là dãy tăng hay \(u_{n+1}>u_n\) \(\forall n\ge2\)
Với \(n=2\) ta có \(u_3>u_2\) (đúng)
Giả thiết cũng đúng với \(n=k\) hay \(u_{k+1}>u_k\)
Ta cần chứng minh \(u_{k+1}>u_{k+1}\)
Thật vậy, \(u_{k+2}=\sqrt{u_{k+1}}+\sqrt{u_k}>\sqrt{u_k}+\sqrt{u_{k-1}}=u_{k+1}\)
Mặt khác \(u_n=\sqrt{u_{n-1}}+\sqrt{u_{n-2}}< \sqrt{u_n}+\sqrt{u_n}=2\sqrt{u_n}\)
\(\Rightarrow u_n^2< 4u_n\Rightarrow u_n< 4\)
\(\Rightarrow\) Dãy số tăng và bị chặn trên nên nó có giới hạn
Gọi giới hạn của dãy số là \(a\Rightarrow lim\left(u_n\right)=lim\left(u_{n-1}\right)=lim\left(u_{n+1}\right)=a\)
Từ biểu thức: \(u_{n+1}=\sqrt{u_n}+\sqrt{u_{n-1}}\)
Lấy giới hạn 2 vế: \(\Rightarrow a=\sqrt{a}+\sqrt{a}\Rightarrow\left[{}\begin{matrix}a=0\left(l\right)\\a=4\end{matrix}\right.\)
Vậy \(lim\left(u_n\right)=4\)
Đề chỗ này có vấn đề:
\(u_n^2+2021u_n-2023u_{n+1}+1\)
Thiếu dấu "="
Cả biểu thức đấy bằng 0 ạ