K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2020

Có: \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\). Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\Rightarrow\hept{\begin{cases}a+b=2c\Rightarrow a=2c-b\\b+c=2a\left(1\right)\\c+a=2b\left(2\right)\end{cases}}\)

Thay a=2c-b vào (1) và (2) ta được

\(\hept{\begin{cases}b+c=2\left(2c-b\right)\\c+\left(2c-b\right)=2b\end{cases}\Rightarrow b=c\Rightarrow a=c}\)

Vậy a=b=c

Khi đó: \(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

Nguồn: GV

25 tháng 4 2020

Bảo Ngọc Đàm Bạn có chắc là ad đc tcdtsbn vs mọi a ; b ; c đôi một khác nhau ko ạ ?
nguyễn thị kim oanh              Trình bày bài kia là trg hợp 1 : a + b +  c ≠ 0 

Trường hợp 2 : a + b + c = 0 

~ Tự lm ~

17 tháng 12 2019

Câu hỏi của Chu Hoàng THủy Tiên - Toán lớp 7 - Học toán với OnlineMath

23 tháng 12 2015

\(\Leftrightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{c+a}{b}\Leftrightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

=> a= b =c 

=> P = (1+1) ( 1+1)(1+1) = 2.2.2 =8

11 tháng 12 2017

cảm ơn

18 tháng 11 2018

https://olm.vn/hoi-dap/detail/55826890240.html

31 tháng 10 2016

Ta có : \(\frac{a}{2009}=\frac{b}{2011}=\frac{c}{2013}=\frac{a-b}{-2}=\frac{b-c}{-2}=\frac{a-c}{-4}\)

\(=>\frac{\left(a-c\right)^2}{16}=\left(\frac{a-b}{-2}\right).\left(\frac{b-c}{-2}\right)=\frac{\left(a-b\right).\left(b-c\right)}{4}\)

\(=>\frac{\left(a-c\right)^2}{4}=\left(a-b\right).\left(b-c\right)\)

31 tháng 10 2016

Áp dụng t/c dãy tỉ số bằng nhau,ta có:

\(\frac{a}{2009}=\frac{b}{2011}=\frac{a-b}{2009-2011}=\frac{a-b}{-2}\)

\(\frac{b}{2011}=\frac{c}{2013}=\frac{b-c}{2011-2013}=\frac{b-c}{-2}\)

\(\frac{a}{2009}=\frac{c}{2013}=\frac{a-c}{2009-2013}=\frac{a-c}{-4}\)

=> \(\frac{a-b}{-2}=\frac{b-c}{-2}=\frac{a-c}{-4}\)

=> \(\frac{a-b}{-2}.\frac{b-c}{-2}=\left(\frac{a-c}{4}\right)^2\)

=> \(\frac{\left(a-c\right)^2}{4^2}=\frac{\left(a-b\right)\left(b-c\right)}{4}\)

=> \(\frac{\left(a-c\right)^2}{4}=\left(a-c\right)\left(b-c\right)\)

31 tháng 10 2016

Ta có : \(\frac{a}{2009}=\frac{b}{2011}=\frac{c}{2013}=\frac{a-b}{-2}=\frac{b-c}{-2}=\frac{a-c}{-4}\)

\(=>\frac{\left(a-c\right)^2}{16}=\left(\frac{a-b}{-2}\right).\left(\frac{b-c}{-2}\right)=\frac{\left(a-b\right).\left(b-c\right)}{4}\)

\(=>\frac{\left(a-c\right)^2}{4}=\left(a-b\right).\left(b-c\right)\)

21 tháng 12 2019

Có: \(\frac{3a+b+2c}{2a+c}=\frac{a+3b+c}{2b}=\frac{a+2b+2c}{b+c}\)

\(\Rightarrow\frac{a+b+c+2a+c}{2a+c}=\frac{a+b+c+2b}{2b}=\frac{a+b+c+b+c}{b+c}\)

\(\Rightarrow\frac{a+b+c}{2a+c}+1=\frac{a+b+c}{2b}+1=\frac{a+b+c}{b+c}+1\)

\(\Rightarrow\frac{a+b+c}{2a+c}=\frac{a+b+c}{2b}=\frac{a+b+c}{b+c}\)

\(\Rightarrow2a+c=2b=b+c\)

\(\Rightarrow\hept{\begin{cases}c=b\\a=\frac{1}{2}b\end{cases}}\)

Thay vào biểu thức trên , ta được:

\(P=\)\(\frac{\left(\frac{1}{2}b+b\right)\left(b+b\right)\left(b+\frac{1}{2}b\right)}{\frac{1}{2}b.b.b}=9\)

Vậy \(P=9\)