Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{a}{2009}=\frac{b}{2011}=\frac{c}{2013}=\frac{a-b}{-2}=\frac{b-c}{-2}=\frac{a-c}{-4}\)
\(=>\frac{\left(a-c\right)^2}{16}=\left(\frac{a-b}{-2}\right).\left(\frac{b-c}{-2}\right)=\frac{\left(a-b\right).\left(b-c\right)}{4}\)
\(=>\frac{\left(a-c\right)^2}{4}=\left(a-b\right).\left(b-c\right)\)
\(\frac{a}{2013}=\frac{b}{2015}=\frac{c}{2017}=\frac{a-b}{-2}=\frac{b-c}{-2}=\frac{a-c}{-4}.\)
\(\Rightarrow\left(\frac{a-b}{-2}\right)x\left(\frac{b-c}{-2}\right)=\left(\frac{a-c}{-4}\right)^2\)
\(\Rightarrow\frac{\left(a-b\right)x\left(b-c\right)}{4}=\frac{\left(a-c\right)^2}{16}\)
\(\Rightarrow\left(a-b\right)x\left(b-c\right)=\frac{\left(a-c\right)^2}{4}\) (dpcm)
đặt a/2003=b/2005=c/2007=t
=>a=2003t;b=2005t;c=2007t
ta có:\(VT=\frac{\left(a-c\right)^2}{4}=\frac{\left(2003t-2007t\right)^2}{4}=\frac{\left(-4t\right)^2}{4}=\frac{\left(-4\right)^2.t^2}{4}=\frac{16.t^2}{4}=\frac{4.4.t^2}{4}=4t^2\) (1)
\(VP=\left(a-b\right)\left(b-c\right)=\left(2003t-2005t\right)\left(2005t-2007t\right)=\left(-2\right).t.\left(-2\right).t=\left[\left(-2\right).\left(-2\right)\right].t^2=4t^2\left(2\right)\)
từ (1);(2) ta có VT=VP=>đpcm
Đặt: \(\frac{a}{2013}=\frac{b}{2012}=\frac{c}{2011}=k\Rightarrow\hept{\begin{cases}a=2013k\\b=2012k\\c=2011k\end{cases}}\)
\(P=\frac{\left(a-c\right)^4}{\left(a-b\right)^2\left(b-c\right)^2}=\frac{\left(2013k-2011k\right)^4}{\left(2013k-2012k\right)^2\left(2012k-2011k\right)^2}=\frac{16k^4}{k^4}=16\)
Ta có:\(\frac{3a+b+c+d}{a}=\frac{a+3b+c+d}{b}=\frac{a+b+3c+d}{c}=\frac{a+b+c+3d}{d}\)
\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
\(\Rightarrow\orbr{\begin{cases}a+b+c+d=0\\a=b=c=d\end{cases}}\)
\(TH1:a+b+c+d=0\Rightarrow\hept{\begin{cases}a+b=-\left(c+d\right)\\b+c=-\left(a+d\right)\end{cases}}\)
\(\Rightarrow Q=\left(\frac{-\left(c+d\right)}{c+d}\right)^2+\left(\frac{-\left(a+d\right)}{a+d}\right)^2+\left(\frac{c+d}{-\left(c+d\right)}\right)^2+\left(\frac{a+d}{-\left(a+d\right)}\right)^2\)
\(\Rightarrow Q=\left(-1\right)^2\cdot4=1\cdot4=4\)
\(TH2:a=b=c=d\)
\(\Rightarrow Q=\left(\frac{a+a}{a+a}\right)^2+\left(\frac{a+a}{a+a}\right)^2+\left(\frac{a+a}{a+a}\right)^2+\left(\frac{a+a}{a+a}\right)^2=1^2\cdot4=1\cdot4=4\)
Vậy Q=4
Ta có: \(\frac{a}{2009}=\frac{b}{2010}=\frac{c}{2011}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{2009}=\frac{b}{2010}=\frac{c}{2011}=\frac{a-b}{2009-2010}=\frac{b-c}{2010-2011}=\frac{c-a}{2011-2009}.\)
\(\Rightarrow\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{c-a}{2}\)
\(\Rightarrow\frac{a-b}{-1}.\frac{b-c}{-1}=\left(\frac{c-a}{2}\right)^2\)
\(\Rightarrow\frac{\left(a-b\right).\left(b-c\right)}{1}=\frac{\left(c-a\right)^2}{2^2}\)
\(\Rightarrow\frac{\left(a-b\right).\left(b-c\right)}{1}=\frac{\left(c-a\right)^2}{4}.\)
\(\Rightarrow4.\left(a-b\right).\left(b-c\right)=\left(c-a\right)^2.1\)
\(\Rightarrow4.\left(a-b\right).\left(b-c\right)=\left(c-a\right)^2\)
\(\Rightarrow4.\left(a-b\right).\left(b-c\right)-\left(c-a\right)^2=0.\)
Hay \(M=0.\)
Vậy \(M=0.\)
Chúc bạn học tốt!
Áp dụng t/c dãy tỉ số bằng nhau,ta có:
\(\frac{a}{2009}=\frac{b}{2011}=\frac{a-b}{2009-2011}=\frac{a-b}{-2}\)
\(\frac{b}{2011}=\frac{c}{2013}=\frac{b-c}{2011-2013}=\frac{b-c}{-2}\)
\(\frac{a}{2009}=\frac{c}{2013}=\frac{a-c}{2009-2013}=\frac{a-c}{-4}\)
=> \(\frac{a-b}{-2}=\frac{b-c}{-2}=\frac{a-c}{-4}\)
=> \(\frac{a-b}{-2}.\frac{b-c}{-2}=\left(\frac{a-c}{4}\right)^2\)
=> \(\frac{\left(a-c\right)^2}{4^2}=\frac{\left(a-b\right)\left(b-c\right)}{4}\)
=> \(\frac{\left(a-c\right)^2}{4}=\left(a-c\right)\left(b-c\right)\)
Ta có : \(\frac{a}{2009}=\frac{b}{2011}=\frac{c}{2013}=\frac{a-b}{-2}=\frac{b-c}{-2}=\frac{a-c}{-4}\)
\(=>\frac{\left(a-c\right)^2}{16}=\left(\frac{a-b}{-2}\right).\left(\frac{b-c}{-2}\right)=\frac{\left(a-b\right).\left(b-c\right)}{4}\)
\(=>\frac{\left(a-c\right)^2}{4}=\left(a-b\right).\left(b-c\right)\)