Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hoàng Lê Bảo Ngọc, Trương Hồng Hạnh, Trần Việt Linh, Nguyễn Huy Tú
Giải:
Ta có: \(\frac{a_1}{a_{2018}}=\frac{a_1}{a_2}.\frac{a_2}{a_3}...\frac{a_{2017}}{a_{2018}}=-5^{2017}\)
Mà \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2017}}{a_{2018}}\)
\(\Rightarrow\frac{a_1}{a_2}=-5\)
\(S=\frac{a_1+a_2+a_3+...+a_{2017}}{a_2+a_3+a_4+...+a_{2018}}=\frac{a_1}{a_2}=-5\)
Vậy S = -5
Mn xem t lm đúng khống nhé! T không chắc lắm
Ta có :
\(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}.....\frac{a_{2017}}{a_{2018}}=\frac{a_1}{a_{2018}}=-5^{2017}\)
Mặt khác : \(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}.....\frac{a_{2017}}{a_{2018}}=\left(\frac{a_1}{a_2}\right)^{2017}\)
\(\Rightarrow\frac{a_1}{a_2}=-5\) \(\left(1\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}.....\frac{a_{2017}}{a_{2018}}=\frac{a_1+a_2+a_3+...+a_{2017}}{a_2+a_3+a_4+...+a_{2018}}\) \(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\Rightarrow S=5\)
Vậy : \(S=5\)
Có \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=.........=\frac{a_{2017}}{a_{2018}}=\frac{a_1+a_2+.........+a_{2017}}{a_2+a_3+........+a_{2018}}\)
Mà \(\frac{a_1}{a_2}=\frac{a_1+a_2+............+a_{2017}}{a_2+a_3+.............+a_{2018}}\)
\(\frac{a_2}{a_3}=\frac{a_1+a_2+..........+a_{2017}}{a_2+a_3+...........+a_{2018}}\)
.........
\(\frac{a_{2017}}{a_{2018}}=\frac{a_1+a_2+...........+a_{2017}}{a_2+a_3+.............+a_{2018}}\)
\(\Leftrightarrow\frac{a_1}{a_{2018}}=\left(\frac{a_1+a_2+...........+a_{2017}}{a_2+a_3+.............+a_{2018}}\right)\)
Vậy ......
Hình như bị sai đề rồi bạn Nguyễn Thị Ngọc Diệp
Chỗ sai:
\(\frac{a_1}{a_{2018}}=\left(\frac{a_1+a_2+..........+a_{2017}}{a_2+a_3+...........+a_{2018}}\right)\)
Bạn sửa lại đề đi rồi mình làm lại cho
Em kiểm tra lại đề bài nhé!
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=.....=\frac{a_{2019}}{a_{2020}}=\frac{a_1+a_2+...+a_{2019}}{a_2+a_3+...+a_{2020}}\)
=> \(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}...\frac{a_{2019}}{a_{2020}}=\left(\frac{a_1+a_2+...+a_{2019}}{a_2+a_3+...+a_{2020}}\right)^{2019}\)
=> \(\frac{a_1}{a_{2020}}=\left(\frac{a_1+a_2+...+a_{2019}}{a_2+a_3+...+a_{2020}}\right)^{2019}\)
Ta có \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_{2020}}{a_{2021}}=\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\)(dãy tỉ só bằng nhau)
=> \(\frac{a_1}{a_2}=\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\)
<=> \(\left(\frac{a_1}{a_2}\right)^{2020}=\left(\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\right)^{2020}\)
<=> \(\frac{a_1}{a_2}.\frac{a_1}{a_2}.\frac{a_1}{a_2}...\frac{a_1}{a_2}=\left(\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\right)^{2020}\)
<=> \(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}...\frac{a_{2020}}{a_{2021}}=\left(\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\right)^{2020}\)
<=> \(\frac{a_1}{a_{2021}}=\left(\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\right)^{2020}\)
Ta có : \(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}....\frac{a_{2017}}{a_{2018}}=\frac{a_1}{a_{2018}}=-5^{2017}\)
Mặt khác : \(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}.....\frac{a_{2017}}{a_{2018}}=\left(\frac{a_1}{a_2}\right)^{2017}\)
\(\Rightarrow\frac{a_1}{a_2}=-5\) (1)
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=....=\frac{a_{2017}}{a_{2018}}=\frac{a_1+a_2+a_3+....+a_{2017}}{a_2+a_3+a_4+.....+a_{2018}}\) (2)
Từ (1) và (2)
=> S = -5
Có: \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=.....=\frac{a_{2008}}{a_{2009}}=\frac{a_1+a_2+a_3+...+a_{2008}}{a_2+a_3+a_4+....+a_{2009}}\)(tính chất dãy tỉ số bằng nhau)
=> \(\left(\frac{a_1}{a_2}\right)^{2008}=\left(\frac{a_2}{a_3}\right)^{2008}=...=\left(\frac{a_{2008}}{a_{2009}}\right)^{2008}=\left(\frac{a_1+a_2+...+a_{2008}}{a_2+a_3+...+a_{2009}}\right)^{2008}\)
\(=\frac{a_1.a_2.....a_{2008}}{a_2.a_3.....a_{2009}}=\frac{a_1}{a_{2009}}\)
=> \(\frac{a_1}{a_{2009}}=\left(\frac{a_1+a_2+...+a_{2008}}{a_2+a_3+....+a_{2009}}\right)^{2008}\)
=> Đpcm
Ta có:
\(\frac{a1}{a2}=\frac{a2}{a3}=\frac{a3}{a4}=...=\frac{a2008}{a2009}=\frac{\left(a1+a2+...+a2008\right)}{\left(a2+a3+...+a2009\right)}\)
\(\Rightarrow\left(\frac{a1}{a2}\right)^{2008}=\left(\frac{a2}{a3}\right)^{2008}=..=\left(\frac{a2008}{a2009}\right)^{2008}=\left(\frac{a1+a2+..+a2008}{a2+a3+..+a2009}\right)^{2008}\)
\(\Rightarrow\frac{a1.a2....a2008}{a2.a3...a2009}=\left(\frac{a1+a2+..+a2008}{a2+a3+..+a2009}\right)^{2008}\)
\(\Rightarrow\frac{a1}{a2009}=\left(\frac{a1+a2+..+a2008}{a2+a3+..+a2009}\right)^{2008}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có;
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_{2018}}{a_{2019}}=\frac{a_1+a_2+...+a_{2018}}{a_2+a_3+...+a_{2019}}\)(1)
Ta có:
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_{2018}}{a_{2019}}\Rightarrow\frac{a_1^{2018}}{a_2^{2018}}=\frac{a_1^{2018}}{a_2^{2018}}=\frac{a_2^{2018}}{a_3^{2018}}=...=\frac{a_{2018}^{2018}}{a_{2019}^{2018}}=\frac{a_1\cdot a_2\cdot...a_{2018}}{a_2\cdot a_3\cdot...\cdot a_{2019}}=\frac{a_1}{a_{2019}}\)(2)
Từ (1) và (2) suy ra
\(\frac{a_1^{2018}}{a_2^{2018}}=\frac{a_2^{2018}}{a_3^{2018}}=...=\frac{a_{2018}^{2018}}{a_{2019}^{2018}}=\left(\frac{a_1+a_2+...+a_{2018}}{a_2+a_3+...+a_{2019}}\right)^{2018}\)(3)
Từ (1), (2), (3) suy ra điều phải chứng minh