K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2021

\(u_2=\sqrt{2}\left(2+3\right)-3=5\sqrt{2}-3\)

\(u_3=\sqrt{\dfrac{3}{2}}.5\sqrt{2}-3=5\sqrt{3}-3\)

\(u_4=\sqrt{\dfrac{4}{3}}.5\sqrt{3}-3=5\sqrt{4}-3\)

....

\(\Rightarrow u_n=5\sqrt{n}-3\)

\(\Rightarrow\lim\limits\dfrac{u_n}{\sqrt{n}}=\lim\limits\dfrac{5\sqrt{n}-3}{\sqrt{n}}=5\)

15 tháng 10 2023

1:

a: \(u_2=2\cdot1+3=5;u_3=2\cdot5+3=13;u_4=2\cdot13+3=29;\)

\(u_5=2\cdot29+3=61\)

b: \(u_2=u_1+2^2\)

\(u_3=u_2+2^3\)

\(u_4=u_3+2^4\)

\(u_5=u_4+2^5\)

Do đó: \(u_n=u_{n-1}+2^n\)

Đặt \(\dfrac{u_n}{n+1}=v_n\)

\(GT\Rightarrow\left\{{}\begin{matrix}v_1=\dfrac{u_1}{1+1}=1\\v_{n+1}=\dfrac{1}{4}v_n,\forall n\in N\text{*}\end{matrix}\right.\)

\(\Rightarrow v_n=\dfrac{1}{4}^{n-1},\forall n\in N\text{*}\)

\(\Rightarrow u_n=\left(n+1\right).\dfrac{1}{4}^{n-1},\forall n\in N\text{*}\)

NV
21 tháng 1 2021

Với \(n>1\)

\(n\left(n^2-1\right)u_n=u_1+2u_2+...+\left(n-1\right)u_{n-1}\) (1)

\(\Leftrightarrow n^3-n.u_n=u_1+2u_2+...+\left(n-1\right)u_{n-1}\)

\(\Leftrightarrow n^3.u_n=u_1+2u_2+...+\left(n-1\right)u_{n-1}+n.u_n\) (2)

Thay n bởi \(n-1\) vào (2):

\(\Rightarrow\left(n-1\right)^3u_{n-1}=u_1+2u_2+...+\left(n-1\right)u_{n-1}\) (3)

Từ (1) và (3):

\(\Rightarrow n\left(n^2-1\right)u_n=\left(n-1\right)^2u_{n-1}\)

\(\Leftrightarrow n\left(n+1\right)u_n=\left(n-1\right)^2u_{n-1}\)

\(\Rightarrow u_n=\dfrac{\left(n-1\right)^2}{\left(n+1\right)n}u_{n-1}=\dfrac{\left(n-1\right)^2}{\left(n+1\right)n}.\dfrac{\left(n-2\right)^2}{n\left(n-1\right)}u_{n-2}=...=\dfrac{\left(n-1\right)^2\left(n-2\right)^2....1^2}{\left(n+1\right)n.n\left(n-1\right)...3.2}u_1\)

\(\Rightarrow u_n=\dfrac{\left[\left(n-1\right)!\right]^2}{\dfrac{\left(n+1\right).n^2\left[\left(n-1\right)!\right]^2}{2}}u_1=\dfrac{4}{n^2\left(n+1\right)}\) 

Công thức này chỉ đúng với \(n\ge2\)

1 tháng 12 2023

NV
5 tháng 3 2022

\(u_{n+1}=\dfrac{u_n}{u_n+1}\Rightarrow\dfrac{1}{u_{n+1}}=\dfrac{1}{u_n}+1\)

Đặt \(\dfrac{1}{u_n}=v_n\Rightarrow\left\{{}\begin{matrix}v_1=\dfrac{1}{u_1}=1\\v_{n+1}=v_n+1\end{matrix}\right.\)

\(\Rightarrow v_n\) là CSC với công sai \(d=1\Rightarrow v_n=v_1+\left(n-1\right).1=n\)

\(\Rightarrow u_n=\dfrac{1}{n}\)

\(\Rightarrow u_n+1=\dfrac{n+1}{n}\)

\(\lim\dfrac{2014\left(\dfrac{2}{1}\right)\left(\dfrac{3}{2}\right)\left(\dfrac{4}{3}\right)...\left(\dfrac{n+1}{n}\right)}{2015n}=\lim\dfrac{2014\left(n+1\right)}{2015n}=\dfrac{2014}{2015}\)

5 tháng 3 2022

https://hoc24.vn/cau-hoi/giai-phuong-trinhleft3-4sin2xrightleft3-4sin23xright1-2cos10x.4916575957961

Giúp mik bài này với ạ