Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(u_{n+1}=\dfrac{2}{3}u_n+\dfrac{2}{3}\Rightarrow u_{n+1}-2=\dfrac{2}{3}\left(u_n-2\right)\)
Đặt \(u_n-2=v_n\Rightarrow\left\{{}\begin{matrix}v_1=u_1-2=1\\v_{n+1}=\dfrac{2}{3}v_n\end{matrix}\right.\)
\(\Rightarrow v_n\) là CSN với công bội \(q=\dfrac{2}{3}\Rightarrow v_n=1.\left(\dfrac{2}{3}\right)^{n-1}=\left(\dfrac{2}{3}\right)^{n-1}\)
\(\Rightarrow u_n=v_n+2=\left(\dfrac{2}{3}\right)^{n-1}+2\)
Từ công thức dãy số ta thấy \(u_n\) là cấp số cộng với \(\left\{{}\begin{matrix}u_1=2\\d=3\end{matrix}\right.\)
\(\Rightarrow u_n=u_1+\left(n-1\right)d=2+\left(n-1\right)3=3n-1\)
\(\Rightarrow I=\lim\limits\dfrac{3n-1}{3n+1}=1\)
\(u_{n+1}=\sqrt{1+u_n^2}\left(1\right)\)
\(u_1=3=\sqrt{9}\)
\(u_2=\sqrt{1+u_1^2}=\sqrt{10}\)
\(u_3=\sqrt{1+u_2^2}=\sqrt{11}\)
...
Dự đoán công thức:\(u_n=\sqrt{n+8}\),\(n\ge1\) (*)
Thật vậy
+)\(n=1,(*)\)\(\Leftrightarrow u_1=3\) (lđ)
+)Giả sử (*) đúng với mọi \(n=k,k>1\)
\((*)\Leftrightarrow u_k=\sqrt{k+8}\)
+)\(n=k+1,\) thay vào (1) có: \(u_{k+2}=\sqrt{1+u^2_{k+1}}=\sqrt{1+\left(\sqrt{1+u_k^2}\right)^2}=\sqrt{2+u^2_k}=\sqrt{2+k+8}=\sqrt{10+k}\)
\(\Rightarrow\)(*) đúng với n=k+1
Vậy CTSHTQ: \(u_n=\sqrt{n+8}\), \(n\ge1\)
1:
a: \(u_2=2\cdot1+3=5;u_3=2\cdot5+3=13;u_4=2\cdot13+3=29;\)
\(u_5=2\cdot29+3=61\)
b: \(u_2=u_1+2^2\)
\(u_3=u_2+2^3\)
\(u_4=u_3+2^4\)
\(u_5=u_4+2^5\)
Do đó: \(u_n=u_{n-1}+2^n\)
Xét \(\dfrac{1}{u_{n+1}}=\dfrac{u_n+4}{2u_n}=\dfrac{1}{2}\left(1+\dfrac{4}{u_n}\right)\) (1)
Đặt \(\dfrac{1}{u_n}=x_n\)
(1) <=> \(x_{n+1}=\dfrac{1}{2}\left(4x_n+1\right)=2x_n+\dfrac{1}{2}\)
<=> \(x_{n+1}+\dfrac{1}{2}=2\left(x_n+\dfrac{1}{2}\right)\) (2)
Đặt \(x_n+\dfrac{1}{2}=t_n\)
(2) <=> tn+1 = 2.tn => q = 2
Có: \(t_n=t_1.2^{n-1}\)
Mà \(t_1=x_1+\dfrac{1}{2}=\dfrac{1}{u_1}+\dfrac{1}{2}=\dfrac{3}{2}\)
=> \(t_n=\dfrac{3}{2}.2^{n-1}\)
=> \(x_n=\dfrac{3}{2}.2^{n-1}-\dfrac{1}{2}\)
=> \(u_n=\dfrac{2}{3.2^{n-1}-1}\)