K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2017

T lm nhé!

Ta có: \(U_{n+1}=\dfrac{\left(13+\sqrt{3}\right)^{n+1}-\left(13-\sqrt{3}\right)^{n+1}}{2\sqrt{3}}\)

\(=\dfrac{\left(13+\sqrt{3}\right)^n\cdot\left(13+\sqrt{3}\right)-\left(13-\sqrt{3}\right)^n\cdot\left(13-\sqrt{3}\right)}{2\sqrt{3}}\)

\(=\dfrac{\left(13+\sqrt{3}\right)^n\cdot\left(26+\sqrt{3}-13\right)-\left(13-\sqrt{3}\right)^n\left(26-\sqrt{3}-13\right)}{2\sqrt{3}}\)

\(=\dfrac{26\left(13+\sqrt{3}\right)^n+\sqrt{3}\left(13+\sqrt{3}\right)^n-13\left(13+\sqrt{3}\right)^n}{2\sqrt{3}}\)\(\dfrac{-26\left(13-\sqrt{3}\right)^n+\sqrt{3}\left(13-\sqrt{3}\right)^n+13\left(13-\sqrt{3}\right)^n}{.}\)

\(=\dfrac{26\left[\left(13+\sqrt{3}\right)^n-\left(13-\sqrt{3}\right)^n\right]}{2\sqrt{3}}\)\(+\dfrac{\sqrt{3}\left(13+\sqrt{3}\right)^n-13\left(13+\sqrt{3}\right)^n+\sqrt{3}\left(13-\sqrt{3}\right)^n+13\left(13-\sqrt{3}\right)^n}{2\sqrt{3}}\)

\(=\dfrac{26\left[\left(13+\sqrt{3}\right)^n-\left(13-\sqrt{3}\right)^n\right]}{2\sqrt{3}}+\dfrac{-\left[\left(13+\sqrt{3}\right)^n\left(13-\sqrt{3}\right)\right]}{2\sqrt{3}}+\dfrac{\left[\left(13-\sqrt{3}\right)^n\left(13+\sqrt{3}\right)\right]}{2\sqrt{3}}\)

\(=26U_n-\dfrac{166\left[\left(13+\sqrt{3}\right)^{n-1}-\left(13-\sqrt{3}\right)^{n-1}\right]}{2\sqrt{3}}\)

\(=26U_n-166U_{n-1}\) --> đpcm

P/s: Dấu = thứ 3 từ trên xuống cái p/s đấy là cả 1 dòng nha, tại dài quá nên ph chia lm 2 lần viết :v Lóa mắt

21 tháng 8 2017

Tks chị, hỉu r` ạ!!!

24 tháng 5 2017

Mk muốn làm giúp bạn lắm chứ nhưng mà khổ lỗi mk mới học lớp 6 . Xin lỗi bn

24 tháng 5 2017

bài 2 gợi ý từ hdt (x+y+z)^3=x^3+y^3+z^3+3(x+y)(y+z)(z+x) 

VT (ở đề bài) = a+b+c 

<=>....<=>3[căn bậc 3(a)+căn bậc 3(b)].[căn bậc 3(b)+căn bậc 3(c)].[căn bậc 3(c)+căn bậc 3 (a)]=0

từ đây rút a=-b,b=-c,c=-a đến đây tự giải quyết đc r 

11 tháng 6 2023

Câu 1:

Ta thấy \(S_2=\dfrac{\sqrt{3}+S_1}{1-\sqrt{3}S_1}=\dfrac{\sqrt{3}+1}{1-\sqrt{3}}=\dfrac{\left(1+\sqrt{3}\right)^2}{\left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right)}\)\(=\dfrac{4+2\sqrt{3}}{-2}=-2-\sqrt{3}\)

Từ đó \(S_3=\dfrac{\sqrt{3}+S_2}{1-\sqrt{3}S_2}=\dfrac{\sqrt{3}-2-\sqrt{3}}{1-\sqrt{3}\left(-2-\sqrt{3}\right)}=\dfrac{-2}{4+2\sqrt{3}}=\dfrac{1}{-2-\sqrt{3}}\) 

và \(S_4=\dfrac{\sqrt{3}+S_3}{1-\sqrt{3}S_3}=\dfrac{\sqrt{3}+\dfrac{1}{-2-\sqrt{3}}}{1-\dfrac{\sqrt{3}}{-2-\sqrt{3}}}=\dfrac{-2\sqrt{3}-3+1}{-2-\sqrt{3}-\sqrt{3}}=1\)

Đến đây ta thấy \(S_4=S_1\). Cứ tiếp tục làm như trên, ta rút ra được:

\(S_{3k+1}=1\)\(S_{3k+2}=-2-\sqrt{3}\) và \(S_{3k+3}=\dfrac{1}{-2-\sqrt{3}}\), với \(k\inℕ\) 

Ta tính số các số thuộc mỗi dạng \(S_{3k+i}\left(i=1,2,3\right)\) từ \(S_1\) đến \(S_{2017}\).

 - Số các số hạng có dạng \(S_{3k+1}\) là \(\left(2017-1\right):3+1=673\) số

 - Số các số hạng có dạng \(S_{3k+2}\) là \(\left(2015-2\right):3+1=672\) số

 - Số các số hạng có dạng \(S_{3k+3}\) là \(\left(2016-3\right):3+1=672\) số

Như thế, tổng S có thể được viết lại thành 

\(S=\left(S_1+S_4+...+S_{2017}\right)+\left(S_2+S_5+...+S_{2015}\right)+\left(S_3+S_6+...+S_{2016}\right)\)

\(S=613+612\left(-2-\sqrt{3}\right)+612\left(\dfrac{1}{-2-\sqrt{3}}\right)\)

Tới đây mình lười rút gọn lắm, nhưng ý tưởng làm bài này là như vậy.

 

12 tháng 6 2023

Có \(\left(x-\sqrt{x^2+5}\right).\left(y-\sqrt{y^2+5}\right)=5\) (1)

\(\Leftrightarrow\dfrac{\left(x-\sqrt{x^2+5}\right).\left(x+\sqrt{x^2+5}\right)}{x+\sqrt{x^2+5}}.\dfrac{\left(y-\sqrt{y^2+5}\right).\left(y+\sqrt{y^2+5}\right)}{y+\sqrt{y^2+5}}=5\)

\(\Leftrightarrow\left(x+\sqrt{x^2+5}\right).\left(y+\sqrt{y^2+5}\right)=5\) (2) 

Từ (1) và (2) ta có \(\left(x-\sqrt{x^2+5}\right).\left(y-\sqrt{y^2+5}\right)=\left(x+\sqrt{x^2+5}\right).\left(y+\sqrt{y^2+5}\right)\)

\(\Leftrightarrow x\sqrt{y^2+5}+y\sqrt{x^2+5}=0\)

\(\Leftrightarrow x^2\left(y^2+5\right)=y^2\left(x^2+5\right)\left(y\le0;x\ge0\right)\)

\(\Leftrightarrow x^2-y^2=0\Leftrightarrow\left[{}\begin{matrix}x=y\left(\text{loại}\right)\\x=-y\left(\text{nhận}\right)\end{matrix}\right.\)

Khi đó M = x3 + y3 = 0

N = x2 + y2 = 2y2

27 tháng 11 2016

Ta có: a3b−ab3=a3b−ab−ab3+ab=ab(a2−1)−ab(b2−1)

=b(a−1)a(a+1)−a(b−1)b(b+1)

Do tích của 3 số tự nhiên liên tiếp thì chia hết cho 6

=> b(a−1)a(a+1);a(b−1)b(b+1)6a3bab36a3b−ab36

 

27 tháng 11 2016

mk chưa đk hok đến dạng này , còn phần b chắc cx như phần a thôy , pjo mk có vc bận nên tối về mk sẽ lm típ nha