K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

7 tháng 12 2017

a) Năm số hạng đầu là Giải sách bài tập Toán 11 | Giải sbt Toán 11

b) Lập tỉ số

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Theo công thứcđịnh nghĩa ta có Giải sách bài tập Toán 11 | Giải sbt Toán 11

Từ (1) và (2) suy ra

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy, dãy số ( v n ) là cấp số nhân, có v 1   =   1 / 3 ,   q   =   1 / 3

c) Để tính ( u n ) , ta viết tích của n - 1 tỉ số bằng 1/3

Giải sách bài tập Toán 11 | Giải sbt Toán 11

15 tháng 9 2019

Đáp án B

30 tháng 11 2017

Chọn B

Ta có:  u n + 1 u n = 3 n + 1 2 + 1 3 n 2 + 1 = 3    , ∀ n ∈ N *

Dãy số là cấp số nhân với  u 1 = 3 3 ; q = 3

25 tháng 12 2021

help me :((

 

26 tháng 12 2021

Chọn C

15 tháng 12 2018

c)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

23 tháng 5 2017

a)
\(u_1=1+\left(1-1\right).2^1=1\);
\(u_2=1+\left(2-1\right).2^2=1+2^2=5\);
\(u_3=1+\left(3-1\right).2^3=1+2.2^3=17\);
\(u_4=1+\left(4-1\right).2^4=1+3.2^4=49\);
\(u_5=1+\left(5-1\right).2^5=1+4.2^5=129\).
b)
\(u_n=1+\left(n-1\right).2^n\).
\(u_{n+1}=1+\left(n+1-1\right).2^{n+1}=1+n.2^{n+1}\)
\(=1+\left(n-1\right).2^{n+1}+2^{n+1}\)\(=2\left[1+\left(n-1\right).2^n\right]+2^{n+1}-1\)
\(=2.u_n+2^{n+1}-1\).
Vậy công thức truy hồi của dãy số là: \(\left\{{}\begin{matrix}u_1=1\\u_n=2u_{n-1}+2^n-1\end{matrix}\right.\).
c) Có \(u_n=1+\left(n-1\right).2^n\ge1+\left(1-1\right).2^n=1\).
Vậy \(u_n\ge1,\forall n\in N^{\circledast}\). Nên dãy \(\left(u_n\right)\) bị chặn dưới bởi 1.
Xét .
\(u_n-u_{n-1}=2u_{n-1}+2^n-1-u_{n-1}=u_{n-1}+2^n-1\)\(\ge1+2^n-1=2^n>0,\forall n\in N^{\circledast}\).
Vậy \(u_n-u_{n-1}>0,\forall n\in N^{\circledast}\) nên dãy \(\left(u_n\right)\) là dãy số tăng.

21 tháng 9 2018

a. u1 = - 1, un + 1 = un + 3 với n > 1

u1 = - 1;

u2 = u1 + 3 = -1 + 3 = 2

u3 = u2 + 3 = 2 + 3 = 5

u4 = u3 + 3 = 5 + 3 = 8

u5 = u4 + 3 = 8 + 3 = 11

b. Chứng minh phương pháp quy nạp: un = 3n – 4 (1)

+ Khi n = 1 thì u1 = 3.1 - 4 = -1, vậy (1) đúng với n = 1.

+ Giả sử công thức (1) đúng với n = k > 1 tức là uk = 3k – 4.

+ Ta chứng minh (1) đúng với n= k+ 1 tức là chứng minh: uk+1 = 3(k+1) - 4

Thật vậy,ta có : uk + 1 = uk + 3 = 3k – 4 + 3 = 3(k + 1) – 4.

⇒ (1) đúng với n = k + 1

Vậy (1) đúng với ∀ n ∈ N*.