Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Nếu a2 < 0 => a1 < 0 => tổng a1 + a2 < 0 trái với giả thiết
=> a2 > 0 => 0< a2<a3<a4<a5<a6
Mà a1.a2.a3.a4.a5.a6 <0 => a1 < 0
Vì a1 + a2 > 0 => |a1| < |a2|
=> |a1| < |a2| < |a3| < |a4| < |a5| < |a6|
=>6. |a1| < |a1| + |a2| + |a3|+|a4|+|a5|+|a6| = 21 => |a1| < 3,5 Mà |a1| > 0 và nguyên
=> |a1| = 1 hoặc 2 hoặc 3
+) Nếu |a1| = 1 => a1 = -1 và |a2| + |a3|+|a4|+|a5|+|a6| = 21 - 1 = 20
Mà |a2| + |a3|+|a4|+|a5|+|a6| = a2 + a3 + a4 + a5 + a6
=> a1 + a2 + a3 + a4 + a5 + a6. = -1 + 20 = 19
+) Nếu |a1| = 2 => a1 = - 2 và |a2| + |a3|+|a4|+|a5|+|a6| = 19
=> a1 + a2 + a3 + a4 + a5 + a6. = -2 + 19 = 17
+) Nếu |a1| = 3 => a1 = - 3 và |a2| + |a3|+|a4|+|a5|+|a6| = 18
=> a1 + a2 + a3 + a4 + a5 + a6. = - 3 + 18 = 15
Vậy.................
ĐÁP SỐ: a1 + a2 + a3 + a4 + a5 + a6 = 19
LỜI GIẢI:
Nhận thấy: |a1| + |a2| + |a3|+|a4|+|a5|+|a6|=21 = 1+2+3+4+5+6 suy ra { |a1|;|a6|} = {1;6}
Do a1.a2.a3.a4.a5.a6 <0 suy ra số lượng phần tử số nguyên âm là 1, hoặc 3, hoặc 5 phần tử.
Từ giả thiết: tổng của hai số bất kì trong các số đó là số dương ta suy ra 2 điều:
(1) Không có nhiều hơn 1 số nguyên âm.
(2) Giá trị tuyệt đối của số nguyên âm đó là nhỏ nhất.
Vậy ta tìm được giá trị các số nguyên phù hợp:
a1 =-1
a2 = 2
a3 = 3
a4 = 4
a5 = 5
a6 = 6
KẾT LUẬN: a1 + a2 + a3 + a4 + a5 + a6 = 19.
Bạn thử giải toán trên trang này xem nhé
\(44^2 =1936 \)
\(45^2 =2025\)
Phần thừa dư do 2018 không cp : \(2018-[1936+\)\(\dfrac{(2025-1936-1 )}{2}\)] = 38 số
\(S=\dfrac{2}{1}+\dfrac{4}{2}+\dfrac{6}{3}+...+\dfrac{88}{44}+\dfrac{38}{45}=2.44+\dfrac{38}{45} \)
mk mới hok lớp 6 à