Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(u_1=5\)
\(u_2-u_1=1\)
\(u_3-u_2=4\)
............
\(u_n-u_{n-1}=3\left(n-1\right)-2=3n-5\)
Cộng từng vế của đẳng thức và rút gọn ta được:
\(u_n=5+1+4+7+...+3n-5\)
\(=5+\dfrac{\left(3n-5+1\right)\left(n-1\right)}{2}=5+\dfrac{\left(3n-4\right)\left(n-1\right)}{2}\).
Vậy \(u_n=5+\dfrac{\left(3n-4\right)\left(n-1\right)}{2}\) với \(n\ge1\).
Xét hiệu:
\(u_1=5\)
\(u_n-u_{n-1}=3n-5\) \(\left(n\ge2\right)\)
Với \(n\ge2\) thì \(3n-5>0\) nên \(u_n>u_{n-1}\).
Vậy \(\left(u_n\right)\) là dãy số tăng.
a) Năm số hạng đầu của dãy số là 3, √10, √11, √12, √13.
b) Ta có: u1 = 3 = √9 = √(1 + 8)
u2 = √10 = √(2 + 8)
u3 = √11 = √(3 + 8)
u4 = √12 = √(4 + 8)
...........
Từ trên ta dự đoán un = √(n + 8), với n ε N* (1)
Chứng minh công thức (1) bằng phương pháp quy nạp:
- Với n = 1, rõ ràng công thức (1) là đúng.
- Giả sử (1) đúng với n = k ≥ 1, tức là có uk = √(k + 8) với k ≥ 1.
Theo công thức dãy số, ta có:
uk+1 = .
Như vậy công thức (1) đúng với n = k + 1.
a) Năm số hạng đầu của dãy số là 3, √10, √11, √12, √13.
b) Ta có: u1 = 3 = √9 = √(1 + 8)
u2 = √10 = √(2 + 8)
u3 = √11 = √(3 + 8)
u4 = √12 = √(4 + 8)
...........
Từ trên ta dự đoán un = √(n + 8), với n ε N* (1)
Chứng minh công thức (1) bằng phương pháp quy nạp:
- Với n = 1, rõ ràng công thức (1) là đúng.
- Giả sử (1) đúng với n = k ≥ 1, tức là có uk = √(k + 8) với k ≥ 1.
Theo công thức dãy số, ta có:
uk+1 = .
Như vậy công thức (1) đúng với n = k + 1.
a) Ta có:
u1 = 2, u2 = 2u1 – 1 = 3, u3 = 2u2 – 1= 5
u4 = 2u3 -1 = 9, u5 = 2u4 – 1= 10
b) Với n = 1, ta có: u1 = 21-1 + 1 = 2 : đúng
Giả sử công thức đúng với n = k. Nghĩa là: uk = 2k-1 + 1
Ta chứng minh công thức cũng đúng với n = k + 1,
Nghĩa là chứng minh:
Uk+1 = 2(k+1)-1 + 1 = 2k + 1
Ta có: uk+ 1 = 2uk – 1 = 2(2k -1+ 1) -1 = 2.2k -1 + 2 – 1 = 2k + 1 (đpcm)
Vậy un = 2n-1 + 1 với mọi n ∈ N*
\(\Leftrightarrow u_{n+1}^2-3u_n^2=2\)
Thay \(n\) bằng \(n-1\) ; \(n-2\) ... ta được:
\(u_n^2-3u_{n-1}^2=2\) \(\Rightarrow3u_n^2-3^2u_{n-1}=2.3\)
\(u_{n-1}^2-3u_{n-2}^2=2\Rightarrow3^2u_{n-1}^2-3^3u_{n-2}=2.3^2\)
.....
\(u^2_2-3u_1^2=2\Rightarrow3^{n-1}u_2^2-3^nu_1=2.3^{n-1}\)
Cộng vế với vế:
\(u_{n+1}^2-3^nu_1=2\left(1+3+3^2+...+3^{n-1}\right)\)
\(\Rightarrow u_{n+1}^2=3^n+3^n-1=2.3^n-1\)
\(\Rightarrow u_{n+1}=\sqrt{2.3^n-1}\Rightarrow u_n=\sqrt{2.3^{n-1}-1}\)