K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Xét \({u_{n + 1}} - {u_n} = {n^2} + 2n + 1 - {n^2} = 2n + 1\)

Do \(n \in \mathbb{N}* \Rightarrow 2n + 1 > 0 \Rightarrow {u_{n + 1}} > {u_n}\)

I
21 tháng 9 2023

ta có :

\(u_n=n^2\\ =>u_{n+1}=\left(n+1\right)^2\)

ta thấy :\(n^2< \left(n+1\right)^2\) \(n\in N\)*

 

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có:

\(\begin{array}{l}\frac{{{u_{n + 1}}}}{{{u_n}}} > 1\,\,\,\forall n \in {\mathbb{N}^*}\\ \Leftrightarrow {u_{n + 1}} > {u_n}\,\,\,\forall n \in {\mathbb{N}^*}\end{array}\)

=> Luôn đúng

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Ta có: \({u_{n + 1}} = 3\left( {n + 1} \right) - 1 = 3n + 2\).

Suy ra \({u_{n + 1}} > {u_n}\).

b) Ta có: \({v_{n + 1}} = \frac{1}{{{{\left( {n + 1} \right)}^2}}}\).

Suy ra: \({u_{n + 1}} < {u_n}\).

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Đáp án đúng là: D

Dãy số (un) được xác định bởi: u1 = 3 và un = \(\frac{1}{3}\).un-1 với mọi n ≥ 2 là cấp số nhân với số hạng đầu u1 = 3 và q = \(\frac{1}{3}\).

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Đáp án đúng là: A

Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = 3\). Do đó dãy số (un) là một cấp số nhân với số hạng đầu \({u_1} = \frac{1}{3}\) và công bội q = 3 nên ta có số hạng tổng quát là: \({u_n} = \frac{1}{3}{.3^{n - 1}} = {3^{n - 2}}\) với n ∈ ℕ*.

Do đó số hạng thứ năm của dãy số (un) là: \({u_5} = {3^{5 - 2}} = 27\).

10 tháng 9 2023

a) Để chứng minh rằng Un > 1 đối với mọi N và Un là dãy tăng, ta có thể sử dụng phương pháp quy nạp.

Bước cơ sở: Ta thấy rằng u1 = 2 > 1.

Bước giả sử: Giả sử đúng đối với một số nguyên k ≥ 1, tức là uk > 1.

Bước bước: Ta sẽ chứng minh rằng uk+1 > 1. Từ công thức cho dãy (Un), ta có:

uk+1 = uk-2015 + uk + 1/uk - uk + 3

Vì uk > 1 (theo giả thiết giả sử), ta có uk - 2015 > 0 và uk + 3 > 0. Do đó, uk+1 > 0.

Vì vậy, ta có uk+1 > 1, và đẳng thức này đúng đối với mọi số nguyên k ≥ 1.

Do đó, ta chứng minh được rằng Un > 1 đối với mọi N và Un là dãy tăng.

b) Để tính limn∑i=11uk - i + 2, ta có thể sử dụng định nghĩa của dãy (Un) và công thức tổng của dãy số aritmeti.

Từ công thức cho dãy (Un), ta có:

uk - i + 2 = uk - 2015 - i + uk + 1 - i + uk + 2 - i

Vì Un là dãy tăng, ta có thể viết lại công thức trên như sau:

uk - i + 2 = uk - 2015 - i + uk + 1 - i + uk + 2 - i

= (uk+1 - 2015 + uk + 1) - (uk - 2015 + uk) + (uk+1 - uk)

= 2uk+1 - 2uk + 2015

Do đó, ta có thể viết lại tổng như sau:

∑i=11uk - i + 2 = 2∑i=11uk+1 - 2∑i=11uk + 2015∑i=1

= 2(u12 - u2) + 2015(12)

Với giá trị cụ thể của u12 và u2, ta có thể tính được tổng trên.