Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số hạng thứ n của dãy là:n(n+1)/2
Số hạng thứ n-1 của dãy là:(n-1)n/2
Ta có:(n-1)n/2+n(n+1)/2=(n^2-n)/2+(n^2+n)/2
=(2n^2)/2=n^2
Vì n thuộc N nên n^2 là số chính phương
Vậy tổng 2 số hạng liên tiếp của dãy là số chính phương.
Ta xét tổng hai số
(n-1)×n/2 + n×(n+1)/2
=> (n-1)×n+n×(n+1) /2
=>n×[(n-1)×(n+1)] /2
=>n×2n /2
=> 2×n2 /2
=> n2
bài toán được chứng minh
a | 0 | 1 | 3 | 6 | 10 | 15 | ... | x | y | ... | |
b | 1 | 2 | 3 (&) | 4 | 5 | 6 | ... | 99 | 100 | ||
c | 1 | 3 (*) | 6 (^) | 10 | 15 | 21 | ... | x | y |
nhận xét:
+ tổng 2 ô liên tiếp ở hàng c bằng bình phương ô phía trên ô thứ hai trong 2 ô (ở hàng b)
VD: (*) + (^) = (&)2
nói vậy hiểu ko??
=> x+ y = 100 ^2 =10 000 (1)
+ Sự liên quan giữa các hàng (đây cũng là căn cứ khi tớ đưa ra cái bảng ở trên, mấy ô bỏ trống là mấy thứ ko cần quan tâm):
a+b=c <=> a-c=b (+)
áp dụng (+) vào cột có a=x, b=100, c=y ta được: (viết vầy có xác định được là cột nào ko???)
x-y = 100 (2)
Cộng 2 vế (1) và (2), ta có:
2x=10 100 <=> x= 5050 hay số hạng thứ 100 là 5050
Câu b thì tớ ko biết
Hai số hạng liên tiếp của dãy có dạng:
\(\dfrac{\left(n-1\right)n}{2}\) và \(\dfrac{n\left(n+1\right)}{2}\) với \(n\ge2\)
Tổng của 2 số hạng liên tiếp:
\(\dfrac{\left(n-1\right)n}{2}+\dfrac{n\left(n+1\right)}{2}=\dfrac{n}{2}\left(n-1+n+1\right)=n^2\) là 1 SCP (đpcm)
1)Ta có:x=4=>x+1=5(1)
Mặt khác:A=x5-5x4+5x3-5x2+5x-1(2)
Thay (1) vào (2) ta có:
A=x5-(x+1)x4+(x+1)x3-(x+1)x2+(x+1)x-1
=>A=x5-x5-x4+x4+x3-x3-x2+x2+x-1
=>A=x-1=4-1=3
2)Vì a:5 dư 2,b:5 dư 3 nên:
Đặt:a=5x+2;b=5y+3
Khi đó:ab=(5x+2)(5y+3)=25xy+10y+15x+6
=5(5xy+2y+3x+1)+1
Vì 5(5xy+2y+3x+1)\(⋮\)5 nên =>5(5xy+2y+3x+1)+1:5 dư 1 hay ab:5 dư 1
Vậy ab:5 dư 1
3)
a)Nhận xét:
a1=1
a2=1+2=3
a3=1+2+3=6
a4=1+2+3+4=10
Khi đó:a100=1+2+3+...+100=\(\dfrac{100.101}{2}\)=5050
an=1+2+3+...+n=\(\dfrac{n\left(n+1\right)}{2}\)
b)Gọi 2 số hạng liên tiếp là n-1;n
=>an-1=1+2+3+...+(n-1)=\(\dfrac{\left(n-1\right)n}{2}\)
=>an=\(\dfrac{\left(n+1\right)n}{2}\)(ở câu a)
Khi đó:tổng 2 số hạng liên tiếp là an+an-1 là:
an+an-1=\(\dfrac{n\left(n+1\right)+n\left(n-1\right)}{2}\)=\(\dfrac{2n.n}{2}\)
=\(\dfrac{2n^2}{2}\)=n2 là số chính phương
Vậy tổng 2 số hạng liên tiếp là số chính phương
Gọi hai số chính phương liên tiếp đó là k2 và (k+1)2
Ta có:
k2+(k+1)2+k2.(k+1)2
=k2+k2+2k+1+k4+2k3+k2
=k4+2k3+3k2+2k+1
=(k2+k+1)2
=[k(k+1)+1]2 là số chính phương lẻ.
Nhận xét các số hạng trong dãy có dạng
\(\frac{n\left(n+1\right)}{2}\)
=>Tổng 2 số hạng liên tiếp của dãy là
\(\frac{n\left(n+1\right)+\left(n+1\right)\left(n+2\right)}{2}=\frac{\left(n+1\right)\left(2n+2\right)}{2}=\frac{\left(n+1\right)2\left(n+1\right)}{2}=\left(n+1\right)\left(n+1\right)=\left(n+1\right)^2\) là số chính phương
=>đpcm
Ta biểu thị 2 số hạng liên tiếp của dãy có dạng:\(\dfrac{\left(n-1\right).n}{2}\) và \(\dfrac{n.\left(n+1\right)}{2}\)
=> \(\dfrac{\left(n-1\right).n}{2}\)+ \(\dfrac{n.\left(n+1\right)}{2}\)=\(\dfrac{n^2-n+n^2+n}{2}=\dfrac{2n^2}{2}=n^2\)
Vậy tổng của hai số hạng liên tiếp bao giờ cũng là số chính phương
Ta có :
a1 = 1
a2 = 1 + 2 = 3
a3 = 1 + 2 + 3 = 6
a4 = 1 + 2 + 3 + 4 = 10
......
a100 = 1 + 2 + 3 + ..... + 100 = \(\frac{100.\left(100+1\right)}{2}=50.101=5050\)
an = 1 + 2 + 3 + ..... + n = \(\frac{n\left(n+1\right)}{2}\)
bn làm hình trái tim như nào vậy chỉ mk cách làm