K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
F
0
3 tháng 1 2017
Bổ đề: Do x+(-x) = 0 (mod 2) nên ta cũng có x = -x = |x| (mod 2).
Vậy S = (a1-a2)+(a2-a3)+...+(an-a1) (mod 2)
<=> S = 0 (mod 2) (đpcm).
Quy nạp theo n cho \(a_n=3^n+1\)(@)
+) Với n = 0 ta có: \(a_0=3^0+1=2\) đúng
Với n = 1 ta có: \(a_1=3^1+1=4\) đúng
=> (@) đúng với n = 0 và n = 1
+) G/s (@) đúng cho đến n
+) Ta cần chứng minh (@) đúng với n + 1
Ta có: \(a_{n+1}=3a_n-2=3\left(3^n+1\right)-2=3^{n+1}+1\)
=> (@) đúng với n + 1
Vậy (@) đúng với mọi n.