K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(21+22+23+...+n+4840\)

\(\Rightarrow\left[\left(n-21\right):1+1\right]\left(n+21\right):2=4840\)

\(\Rightarrow\left(n-20\right)\left(n+21\right)=9680\)

\(\Rightarrow n^2+n-420=9680\)

\(\Leftrightarrow n^2+n-100100=0\)

\(\Leftrightarrow n^2-100n+101n-100100=0\)

\(\Leftrightarrow n\left(n-100\right)+101\left(n-100\right)=0\)

\(\Leftrightarrow\left(n+101\right)\left(n-100\right)=0\)

\(\Leftrightarrow\left[n=-101\text{(loại)},n=100\right]\)

\(\Rightarrow n=100\)

\(\text{Hok tốt!}\)

\(\text{@Kaito Kid}\)

26 tháng 11 2021

21 + 22 + 23 + ... + n = 4840 

=> [(n - 21) : 1 + 1](n + 21) : 2 = 4840

=> (n - 20)(n + 21) = 9680

=> n2 + n - 420 = 9680

<=> n2 + n -  10100 = 0

<=> n2 - 100n + 101n - 10100 = 0

<=> n(n - 100) + 101(n - 100) = 0

<=> (n + 101)(n - 100) = 0

<=> \(\orbr{\begin{cases}n=-101\left(\text{loại}\right)\\n=100\end{cases}}\)

Vậy n = 100 

28 tháng 5 2021

\(U_5=-2\cdot5+3=-7\)

24 tháng 12 2017

19 tháng 1 2019

Chọn A

Với số tự nhiên n ≥ 1, ta có:

Suy ra:

Cộng tương ứng hai vế các đẳng thức trên ta có  với mọi số tự nhiên n1

Để 

Ta kiểm tra với các giá trị  k   ∈   ℕ   từ bé đến lớn

 

Vậy số nguyên n > 1 nhỏ nhất là n = 41( ứng với k = 3).

22 tháng 3 2019

23 tháng 2 2017

20 tháng 6 2018

15 tháng 1 2019

14 tháng 8 2023

 Dễ thấy \(u_n>0,\forall n\inℕ^∗\)

 Ta có \(u_{n+1}-u_n=\dfrac{u_n^2+2021}{2u_n}-u_n=\dfrac{2021-u_n^2}{2u_n}\)

 Với \(n\ge2\) thì \(u_n=\dfrac{u_{n-1}^2+2021}{2u_{n-1}}\) \(=\dfrac{u_{n-1}}{2}+\dfrac{2021}{2u_{n-1}}\) \(>2\sqrt{\dfrac{u_{n-1}}{2}.\dfrac{2021}{2u_{n-1}}}\) \(=\sqrt{2021}\)

Vậy \(u_n>\sqrt{2021},\forall n\ge2\), suy ra \(u_{n+1}-u_n=\dfrac{2021-u_n^2}{2u_n}< 0,\forall n\inℕ^∗\)

\(\Rightarrow\) Dãy \(\left(u_n\right)\) là dãy giảm. Mà \(u_n>\sqrt{2021}\)  \(\Rightarrow\left(u_n\right)\) có giới hạn hữu hạn. Đặt \(\lim\limits_{n\rightarrow+\infty}u_n=L\) \(\Rightarrow L=\dfrac{L^2+2021}{2L}\) \(\Leftrightarrow L=\sqrt{2021}\)

 Vậy \(\lim\limits_{n\rightarrow+\infty}u_n=\sqrt{2021}\)

 

14 tháng 8 2023

Dễ thấy ��>0,∀�∈N∗

 Ta có ��+1−��=��2+20212��−��=2021−��22��

 Với �≥2 thì ��=��−12+20212��−1 =��−12+20212��−1 >2��−12.20212��−1 =2021

Vậy ��>2021,∀�≥2, suy ra ��+1−��=2021−��22��<0,∀�∈N∗

 Dãy (��) là dãy giảm. Mà ��>2021  ⇒(��) có giới hạn hữu hạn. Đặt lim⁡�→+∞��=� ⇒�=�2+20212� ⇔�=2021

 Vậy lim⁡�→+∞��=2021