Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình ràng buộc thêm 1 điều kiện nữa thì đề này mới đúng được:
"Chia 50 kẹo cho 10 cháu, Cháu nào cũng có kẹo. Chứng minh rằng chia cách nào cũng tồn tại 2 cháu có số kẹo như nhau".
Vì rõ ràng nếu có cháu không có kẹo thì chia như các cháu có số kẹo là: 0;1;2;3;4;5;6;7;8;14 là không có cháu nào có số kẹo giống nhau.
Khi đó, bài toán được giải như sau:
Giả sử tồn tại một cách chia nào đó để không có cháu nào có số kẹo như nhau cách chia mà mỗi cháu có số kẹo là: 1;2;3;4;5;6;7;8;9;10 là có số lượng kẹo nhỏ nhất và bằng = 1/2*10*11=55 cái > 50 cái (đề bài) vô lý.
Vậy cách chia nào cũng tồn tại ít nhất 2 cháu có số kẹo bằng nhau.
Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11; 7; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12 nên nếu chia 4 số dư này thành 2 nhóm là (5; 7) và (1; 11) thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên. (nguyên lí Dirichlet)
Gọi số tự nhiên đầu là a
Ta có 10 số đó sẽ là:
a;A+1;A+2;A+3;a+4;...;a+10
vì khi chia a cho 10 thì sẽ dư từ 0 đến 9, Nên
Nếu cộng a cho một đại lượng từ 0 đến 9 sẽ chia hết cho 10
Đặt S1=a1
S2=a2
.....
S10=a10
+,Nếu trong 10 Tổng trên chia hết cho 10 thì ta có đpcm
+, Nếu không có Tổng nào chia hết cho 10 thì luôn tồn tại 2 Tổng chia cho 10 có cùng số dư khi chia cho 10
=>Hiệu của 2 Tổng đó chia hết cho 10 ( đó là Tổng của 1 hay 1 số số trong dãy) - đpcm
Trả lời câu hỏi của Nhóm BGS
Đặt B1 = a1
B2= a1 + a2
...
B10= a1 +a2 +...+a10
Giả sử trong dãy B1 đến B10 không có số nào chia hết cho 10. Nên trong phép chia B1 (1 bé hơn hoặc bằng a bé hơn hoặc bằng 10) có 9 số dư từ 1 đến 9\
-> có 2 số chia cho 10 có cùng số dư nên hiệu hai số này chia hết cho 10\
Gọi hai số đó là Bm và Bn (1bé hơn hoặc bằng m bé hơn hoặc bằng n bé hơn hoặc bằng 10)
Bn - Bm chia hết cho 10
a1 + a2 +...+ a10 - (a1 + a2 +...+ am) chia hết cho 10
am+1 +am+2 +...+ an chia hết cho 10
Vậy có một tổng các số liên tiếp trong dãy trên chia hết cho 10
Hoàn thành!!!
Theo nguyên lí Di-rich-let ta suy ra : Tồn tại 2 số trong 20 mươi số khi chia 19 có cùng số dư.Suy ra hiệu của hai số đó chia hết cho 19
Giả sử 10n , 10m là hai số có cùng số dư khi chia cho 19 \(\left(1\le n< m\le20\right)\)
\(10^m-10^n⋮19\)
\(10^n.\left(10^{m-n}-1\right)⋮19\)mà 10n không chia hết cho 19 nên suy ra :
\(10^{m-n}-1⋮19\)
\(10^{m-n}-1=19k\)Chú ý : \(\left(k\in N\right)\)
\(10^{m-n}=19k+1\)( đpcm )