Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\( {1 \over 2}\)y.4x2y4+3x4y5
=2x2y5+3x4y5
ta có gt=>x=2;y=-1
thay vào đc A=56
tách sai rồi bạn ơi
phải là
\(=\dfrac{1}{2}x^2y.\left(-4\right)x^2y^4+3x^2y^4.x^2y^2\)
=\(2x^4y^5+3x^4y^5\)
=\(5x^4y^5\)
\(A=\dfrac{1}{2}x^2y.\left(-2xy^2\right)^2+2x^2y^3.\left(x^2y^2\right)\)
\(=\dfrac{1}{2}x^2y.\left(-2\right)x^2y^4+2x^4y^5\)
\(=\left(-1\right)x^4.y^5+2x^4y^5\)
\(=x^4y^5\)
Lại có : \(\left(x-2\right)^{18}+\left|y+1\right|=0\)
Mà \(\left\{{}\begin{matrix}\left(x-2\right)^{18}\ge0\\\left|y+1\right|\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^{18}=0\\\left|y+1\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
Mà \(A=x^4y^5\)
\(\Leftrightarrow A=2^4.\left(-1\right)^5\)
\(\Leftrightarrow A=-16\)
a: \(A=x^3y^2\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+xy\left(2-1\right)+y-1=xy+y-1\)
Bậc là 2
b: Thay x=0,1 và y=-2 vào A, ta được:
\(A=-2\cdot0.1+\left(-2\right)-1=-0.2-1-2=-3.2\)
Đề bn ghi ko rõ nên mk lấy đề trên mạng còn bài mk tự lm nha
a, \(A=x^2y+\frac{1}{3}xy^2+\frac{3}{5}xy^2-2xy+3x^2y-\frac{2}{3}\)
\(=x^2y+\frac{xy^2}{3}+\frac{3}{5}xy^2-2xy+3x^2y-\frac{2}{3}\)
\(=x^2y+\frac{xy^2}{3}+\frac{3xy^2}{5}-2xy+3x^2y-\frac{2}{3}\)
\(=4x^2y+\frac{14xy^2}{15}-2xy-\frac{2}{3}\)
b, Khi thay x = -1 và y = 1/2 thì đa thức trên đc
\(A=-1^2.\frac{1}{2}+\frac{1}{3}.\left(-1\right).\left(\frac{1}{2}\right)^2+\frac{3}{5}\left(-1\right).\left(\frac{1}{2}\right)^2-2\left(-1\right).\left(\frac{1}{2}\right)+3\left(-1\right)^2.\left(\frac{1}{2}\right)-\frac{2}{3}\)
\(=-\frac{1}{2}-\frac{1}{12}-\frac{3}{20}-2\left(-1\right).\frac{1}{4}+3.1.\frac{1}{2}-\frac{2}{3}\)
\(=-\frac{1}{2}-\frac{1}{12}-\frac{3}{20}+2.\frac{1}{4}+3.\frac{1}{2}-\frac{2}{3}\)
\(=-\frac{1}{2}-\frac{1}{12}-\frac{3}{20}+\frac{1}{2}+\frac{3}{2}-\frac{2}{3}\)
\(=\frac{3}{5}\)
ヅViruSş ミ★Čøɾøŋα★彡
Em thay nhầm câu b rồi em!
Vào sửa lại đi!
a.\(A=3xy^2+8xy+1\)
b.Thế `x=-1/2;y=-1` vào `A` ta được:
\(A=3.\left(-\dfrac{1}{2}\right).\left(-1\right)^2+8.\left(-\dfrac{1}{2}\right).\left(-1\right)+1\)
\(A=-\dfrac{3}{2}+4+1\)
\(A=\dfrac{-3+10}{2}\)
\(A=\dfrac{7}{2}\)
a: \(A=\left(-2xy^2+5xy^2\right)+\left(3xy+5xy\right)+1=3xy^2+8xy+1\)
b: Khi x=-1/2 và y=-1 thì \(A=3\cdot\dfrac{-1}{2}\cdot1+8\cdot\dfrac{-1}{2}\cdot\left(-1\right)+1\)
\(=-\dfrac{3}{2}+4+1=5-\dfrac{3}{2}=\dfrac{7}{2}\)
a: \(A=31x^2y^3-2xy^3+\dfrac{1}{4}x^2y^2+2\)
\(B=2xy^3+\dfrac{3}{4}x^2y^2-31x^2y^3-x^2-5\)
P=\(A+B=x^2y^2-x^2-3\)
\(A-B=62x^2y^3-4xy^3-\dfrac{1}{2}x^2y^2+x^2+7\)
b: Khi x=6 và y=-1/3 thì \(P=\left(6\cdot\dfrac{-1}{3}\right)^2-6^2-3=4-36-3=1-36=-35\)
\(A=\dfrac{1}{2}x^2\cdot y\cdot4x^2y^4+3x^2y^3\cdot x^2y^2\)
\(=2x^4y^5+3x^4y^5=5x^4y^5\)
Ta có: \(\left(x-2\right)^{18}+\left|y+1\right|=0\)
=>x-2=0 và y+1=0
=>x=2 và y=-1
\(A=5\cdot2^4\cdot\left(-1\right)^5=-80\)