Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
100A = \(\frac{99}{1}+1+\frac{98}{2}+1+...+\frac{1}{99}+1-99\)
100A=\(\frac{100}{1}+\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}-99\)
100A =\(\left(\frac{100}{2}+\frac{100}{3}+..+\frac{100}{99}+100-99\right)\)
100A=\(\left(\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}+1\right)\)
100A=\(\left(\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}+\frac{100}{100}\right)\)
100A=100.\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)\)
A=\(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\)
\(=\left(\frac{98}{2}+1\right)+\left(\frac{97}{3}+1\right)+...+\left(\frac{1}{99}+1\right)+1\)
\(=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}+\frac{100}{100}\)
=>A=\(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\)
Và đến đây là hết biik giải nữa
1) Đặt A = 1 + 3 + 32 + .... + 398 + 399
=> 3A = 3 + 32 + .... + 398 + 3100
=> 3A - A = 3100 - 1
=> 2A = 3100 - 1
=> \(A=\frac{3^{100}-1}{2}\)
Nên : 3100 - (1 + 3 + 32 + .... + 398 + 399)
= 3100 - \(\frac{3^{100}-1}{2}\)
= \(\frac{3^{100}.2}{2}-\frac{3^{100}-1}{2}\)
= \(\frac{3^{100}.2-3^{100}+1}{2}\)
= \(\frac{3^{100}+1}{2}\)
1.
A=n.n+n
A=n(n+1)
+) Nếu n là số tự nhiên chẵn thì => n+1 là số tự nhiên lẻ
Vì chẵn x lẻ = chẵn => A ⋮ 2 nếu n là chắn
+) Nếu n là số tự nhiên lẻ thì => n+1 là số tự nhiên chẵn
Vì lẻ x chẵn = chẵn => A ⋮ 2 nếu n là lẻ
Đã CMR: A ⋮ 2
2.
\(I=99-97+95-93+91-89+....+7-5+3-1\\ I=\left(99+95+91+...+7+3\right)-\left(97+93+.....+5+1\right)\\ I=\left[\left(99-3\right):4+1\right]\cdot\left(99+3\right):2-\left[\left(97-1\right):4+1\right]\cdot\left(97+1\right):2\\ I=25\cdot102:2-25\cdot98:2\\ I=1275-1225\\ I=50\)