Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nhé!
a/ Vì AB // CE nên \(\widehat{ABC}=\widehat{BCE}\)( vì là 2 góc so le trong )
Ta có: \(\widehat{AMB}=\widehat{CME}\)( vì là 2 góc đối đỉnh )
Xét tam giác AMB và tam giác CEM có:
\(\hept{\begin{cases}\widehat{ABC}=\widehat{BCE}\left(cmt\right)\\BM=MC\left(gt\right)\\\widehat{AMB}=\widehat{CME}\left(cmt\right)\end{cases}}\)
suy ra tam giác ABM = tam giác ECM ( g.c.g)
Nhớ k cho mình nhé! Thank you!!!
a) Xét \(\Delta\)ABM và \(\Delta\)ECM có:
BM = CM (M là trung điểm BC)
MA = ME (gt)
\(\widehat{AMB}=\widehat{EMC}\) (đối đỉnh)
\(\Rightarrow\) \(\Delta\)ABM = \(\Delta\)ECM (c-g-c)
b) Do \(\Delta ABM=\Delta ECM\left(cmt\right)\)
\(\Rightarrow AB=CE\) (hai cạnh tương ứng)
c) Xét \(\Delta ACM\) và \(\Delta EBM\) có:
CM = BM (M là trung điểm BC)
MA = ME (gt)
\(\widehat{AMC}=\widehat{BME}\) (đối đỉnh)
\(\Rightarrow\Delta ACM=\Delta EBM\left(c-g-c\right)\)
\(\Rightarrow\widehat{A_1}=\widehat{E_1}\)
Mà \(\widehat{A_1}\) và \(\widehat{E_1}\) là hai góc so le trong
\(\Rightarrow\) AC // BE
CÂu 1:
5x = 53
=> x = 53 / 5
=> x = 10,6
Câu 2:
a) Xét tam giác ABM và tam giác ECM
AMB = EMC ( 2 góc đối đỉnh)
MA = ME (giả thiết)
MB = MC (vì M là trung điểm của BC)
=> tam giác ABM = tam giác ECM (C-G-C)
b) Từ a) tam giác ABM = tam giác ECM
=> BAM = CME (hai góc tương ứng)
Mà hai góc này ở vị trí so le trong nên
=> AB // CE
c) Từ câu b) AB // CE ta có
=> góc A = góc C (trong cùng phía)
=> A + C = 180 độ
=> 180 độ - A = C
=> 180 độ - 90 độ = 90 độ
=> Vậy EC vuông góc với AC
a. Xét tam giác ABM và tam giác DCM có:
+, BM = MC ( AM là đường trung tuyến của tam giác ABC )
+, Góc AMB = góc DMC ( 2 góc đối đỉnh )
+, AM = MD ( gt )
=> tam giác ABM = tam giác DCM ( c.g.c )
=> AB = CD ( 2 cạnh tương ứng )
=> góc BAM = góc CDM ( 2 góc tương ứng )
Mà 2 góc này ở vị trí so le trong
=> AB // CD ( đpcm )
E D C B H K x M N A
a) Xét \(\Delta BEA\) và \(\Delta DCA\) có:
AE = AC (gt)
\(\widehat{BAE}=\widehat{DAC}\) (đối đỉnh)
AB = AD (gt)
\(\Rightarrow\Delta BEA=\Delta DCA\) (c.g.c)
\(\Rightarrow BE=CD\) (2 cạnh t/ư)
b) Ta có: \(BM=\frac{1}{2}BE\) (M là tđ)
\(DN=\frac{1}{2}CD\) (N là tđ)
mà BE = CD \(\Rightarrow BM=DN\)
Vì \(\Delta BEA=\Delta DCA\) (câu a)
\(\Rightarrow\widehat{EBA}=\widehat{CDA}\) (so le trong)
hay \(\widehat{MBA}=\widehat{NDA}\)
Xét \(\Delta ABM\) và \(\Delta ADN\) có:
AB = AD (gt)
\(\widehat{MBA}=\widehat{NDA}\) (c/m trên)
BM = DN (c/m trên)
\(\Rightarrow\Delta ABM=\Delta ADN\left(c.g.c\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{DAN}\) (2 góc t/ư)
mà \(\widehat{DAN}+\widehat{NAB}=180^o\) (kề bù)
\(\Rightarrow\widehat{BAM}+\widehat{NAB}=180^o\)
\(\Rightarrow M,A,N\) thẳng hàng.