Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Hình vẽ (1 điểm)
Xét ΔABM và ΔBCM có:
BM = MC
∠(AMB) = ∠(BMC)
AM = MD
⇒ ΔABM = ΔBCM (c.g.c) (1 điểm)
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
nên ABDC là hình bình hành
=>AC//BD
Xét \(\Delta MAB\) và \(\Delta MDC\) có:
\(MA=MD\)
\(\widehat{AMB}=\widehat{CMD}\) (hai góc đối đỉnh)
\(MB=MC\)
\(\Rightarrow\Delta MAB=\Delta MDC\) (c-g-c)
\(\Rightarrow\widehat{MAB}=\widehat{MDC}\)
Hai góc này ở vị trí so le trong
nên AC // BD.
Xét tam giác AMB và tam giác DMC có:AM=MD(GT)
góc AMB=góc DMC(Đối đỉnh)
BM=MC(GT)
=>tam giác AMB=tam giác DMC(c.g.c)
Xét ΔAHM vuông tại H và ΔDKM vuông tại K có
MA=MD
góc AMH=góc DMK
Do đó: ΔAHM=ΔDKM
=>AH=DK
a: Xét ΔAMB và ΔDMC có
MA=MD
góc AMB=góc DMC
MB=MC
Do đó: ΔAMB=ΔDMC
=>AB=CD
b: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
nên ABDC là hình bình hành
=>BD//AC
a: Xét ΔAMB và ΔCMD có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)
MB=MD
Do đó: ΔAMB=ΔCMD
Xét ΔAMB và ΔDMC có
MA=MD
góc AMB=góc DMC
MB=MC
Do đó: ΔAMB=ΔDMC