Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác AHB và tam giác DHB có:
góc H = 90 độ
HB chung
AB=DB (gt)
=> tam gaics AHB = tam giác DHB ( cạnh huyền cạnh góc vuông)
=> AH = HD ( 2 cạnh tương ứng)
b) Chứng min htuowng tự có có:
tam giác AKC = tam giác EKC ( cạnh huyền - cạnh góc vuông)
=> AK = KE ( 2 cạnh tương ứng)
*) Xét tám giác ADE có:
AH = HD ( cmt)
AK = KE ( cmt)
=> HK alf đường trung bình của hình thang
=> HK//DE hay nói cách khác
HK // DB
A D E C I B J H K M O
- vÌ H là trực tâm của tam giác ABC , \(BD⊥BC,CE⊥AB\Rightarrow\widehat{BEC}=\widehat{BDC}=90^0\) nên BCDE nội tiếp đường tròn đường kính BC. Tâm đường tròn nội tiếp BCDE là J ( trung điểm BC)
- I đối xứng với A qua O => AI là đường kính của đường tròn tâm O =>\(\widehat{ACI}=\widehat{ABI}=90^0\)vì\(\hept{\begin{cases}BD⊥AC\\CI⊥AC\end{cases}\Rightarrow BD}\downarrow\uparrow CI\left(1\right)\) VÀ\(\hept{\begin{cases}CE⊥AB\\BI⊥AB\end{cases}\Rightarrow CE\uparrow\downarrow BI\left(2\right)}\)Từ (1) và (2) BHCI là hình bình hành,mà J LÀ Trung điểm của BC nên J là giao điểm của hai đường chéo HI và BC của hbh BICH nên ta có I,J,H thẳng hàng (DPCM)
- Vì BCDE là tứ giác nội tiếp nên \(\widehat{ABC}=\widehat{ADK}\left(3\right)\)mặt khác ABIC nội tiếp (O) nên \(\widehat{IAC}=\widehat{IBC}\left(4\right)\)ta lại có \(BI⊥AB\Rightarrow\widehat{ABC}+\widehat{IBC}=90^O\left(5\right)\)TỪ 3,4,5 ta có \(\widehat{IAC}+\widehat{ADK}=90^O\)hay \(DE⊥AM\Rightarrow\Delta ADM\)vuông tại D và có DE là đường cao tương ứng tại D nên theo hệ thức lượng trong tam giác vuông có (DPCM) \(\frac{1}{DK^2}=\frac{1}{DA^2}+\frac{1}{DM^2}\)
tam giác BDE: M là tđ(trung điểm) DE, N là tđ BE => MN là đtb(đường trung bình) của tam giác BDE.=> MN//DB <=> MN//BA
tương tự c/m MQ là đtb của tam giác DEC=> MQ//EC hay MQ//AC. mà AC vuông góc AB=> MN vuông góc PQ.=> góc NMQ =90. tương tự theo cách đtb thì các góc còn lại của tứ giác MNPQ =90=> là hình chữ nhật
MN là đtb=> MN=1/2 DB. MQ=1/2 EC mà EC=DB=> MN=DB
=> tg là hình vuông(dhnb)
hình bạn tự vẽ nha :
a.Ta có:
ˆAPM=ˆAHM=ˆAQM=90oAPM^=AHM^=AQM^=90o
→A,P,H,M,Q∈→A,P,H,M,Q∈ đường tròn đường kính AMAM
b.Từ câu a →A,P,H,M,Q∈(O,12AM)→A,P,H,M,Q∈(O,12AM)
→OP=OH=OM=OQ→OP=OH=OM=OQ
Mà ΔABCΔABC đều, AH⊥BC→ˆBAH=ˆHAC=30oAH⊥BC→BAH^=HAC^=30o
→ˆHOQ=2ˆHAQ=60o,ˆPOH=2ˆPAH=60o→HOQ^=2HAQ^=60o,POH^=2PAH^=60o
Do OP=OH,OH=OQOP=OH,OH=OQ
→ΔOPH,ΔOHQ→ΔOPH,ΔOHQ đều
→PH=OP=OQ=QH→PH=OP=OQ=QH
→OPHQ→OPHQ là hình thoi
a) Có \widehat{APM}=\widehat{AHM}=\widehat{AQM}=90^oAPM=AHM=AQM=90o nên 5 điểm A, P, M, H, Q cùng thuộc đường tròn đường kính AM.
b) Vì AH là đường cao của tam giác đều ABC nên \widehat{BAH}=\widehat{HAC}=30^oBAH=HAC=30o.
Vì A, P, M, H, Q cùng nằm trên đường tròn tâm O nên OP = OH = OQ = OM và \widehat{POH}=2\widehat{PAH}=60^oPOH=2PAH=60o ; \widehat{QOH}=60^oQOH=60o suy ra OPH và OQH là hai tam giác đều, do đó OQHP là hình thoi.
c) Gọi r là bán kính đường tròn ngoại tiếp đa giác APMHQ thì AM = 2r và OPH, OQH là hai tam giác đều cạnh r. Do đó PQ=2.\dfrac{r\sqrt{3}}{2}=AM.\dfrac{\sqrt{3}}{2}\ge AH.\dfrac{\sqrt{3}}{2}PQ=2.2r3=AM.23≥AH.23
Do đó PQ ngắn nhất khi và chỉ khi M là trung điểm BC.
Mình nói thêm là mỗi hình vuông nhận một cạnh của bát giác làm cạnh của nó.
Vì M, N là trung điểm AB, AC=> MN là đường trung bình ABC => MN song song BC
PQ chứng minh tương tự trong tam giác IBC=> PQ song song BC
Suy ra: MNsong song PQ(1)
Vì N là trung điểm AC, P là trung điểm IC=> NP là đường trung bình tam giác ACI=> PN song song AI hay PN song song AH
Tương tự => MQ song song AH
suy ra MQ song song NP(2)
Từ (1) và (2) => MNPQ là hình bình hành
VÌ MN song song BC và NP song song AH mà AH vuông góc BC=> MN vuông góc NP
Vậy MNPQ là hcn.