K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2022

giup mik với mai thi hk2 r ,mà mình chx giải ra bài này để ôn

Các nhân tài toán học cứu giúp

22 tháng 4 2022

xét tam giac ABD và tam giác KBD có

^BAD=^BKD(BAvuông AC,DK vuông DC)

^ABD=^KBD(BDlà phân giác ^B)

BD chung

Suy ratam giac ABD = tam giác KBD(cạnh góc vuông ,góc nhọn kề)

 

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔBAD=ΔBHD

Suy ra: BA=BH và DA=DH

b: Xét ΔDAK vuông tại A và ΔDHC vuông tại H có

DA=DH

\(\widehat{ADK}=\widehat{HDC}\)

Do đó: ΔDAK=ΔDHC

Suy ra: DK=DC và AK=HC

c: Ta có: BA+AK=BK

BH+HC=BC

mà BA=BH

và AK=HC

nên BK=BC

d: Ta có: BA=BH

nên B nằm trên đường trung trực của AH(1)

Ta có: DA=DH

nên D nằm trên đường trung trực của AH(2)

Từ (1) và (2) suy ra BD là đường trung trực của AH

3 tháng 5 2019

a) Xét ΔABD và ΔACD có:

           AD chung 

          góc ABD=góc ACD ( do AD là phân giác của góc BAC)

           AB=AC ( ΔABC cân tại A)

Do đó:ΔABD=ΔACD (c-g-c) (đpcm)

3 tháng 5 2019

  Ta có:

AD vuông góc BC(tính chất Δ vuông)

EH vuông góc BC (theo đầu bài)

=>AD//EH (cùng vuông góc với BC)

=>góc ADE=góc DEH (2 góc so le trong)

Lại có:ΔDEC cân theo câu c:

=>góc EDC=góc ECD 

mà góc ECD=góc ABD (ΔABC cân tại A)

=>góc EDC=góc ABD.

Xét ΔBAD có: góc ABD + góc BAD=90 độ (do ΔBAD vuông tại D)

 và ΔDEH có: góc EDH + góc DEH =90 độ (do ΔDEH vuông tại H)

=> góc BAD=góc DEH 

Mà góc BAD=góc DAE (AD là phân giác của góc A)

     góc ADE=góc DEH (2 góc so le trong)

=>góc DAE=góc ADE

=>ΔAED cân tại E

=>DE=AE

mà DE=EC (ΔDEC cân tại E)

=>AE=EC

=>E là trung điểm của AC

=>3 điểm B,G,E thẳng hàng (đpcm)

12 tháng 2 2020

A B M K C I H

a) Xét \(\Delta AHI\)và \(\Delta AKI\)có :

   AI cạnh chung

  \(\widehat{IHA}=\widehat{IKA}\)(AI là tia phân giác của A)

=> \(\Delta AHI=\Delta AKI\left(ch-gn\right)\)

=> AH = AK(2 cạnh tương ứng)

b)  Gọi M là trung điểm của BC

Xét \(\Delta BMI\)và \(\Delta CMI\)có :

BM = CM(gt)

\(\widehat{BMI}=\widehat{CMI}=90^0\)

MI cạnh chung

=> \(\Delta BMI=\Delta CMI\left(c-g-c\right)\)

=> IB = IC(2 cạnh tương ứng)

\(\Delta AHI=\Delta AKI\left(cmt\right)\)=> IH = IK(hai cạnh tương ứng)

Xét \(\Delta IHB\)và \(\Delta IKC\)có :

+) IH = IK(chứng minh trên)

+) IB = IC(chứng minh trên)

=> IH + IB = IK + KC

=> BH = CK(hai cạnh tương ứng)

c) Ta có : AC = AK + KC (1)

               AB = AH - BH (2)

Từ (1) và (2) suy ra : AC + AB = (AK + AH) + (KC - BH)

Do AH = AK,BH = CK => AC + AB = 2AK , suy ra :

AK = \(\frac{AC+AB}{2}\)

Tương tự ta được \(CK=\frac{AC-AB}{2}\)