Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác AMB và tam giác DMC có:AM=MD(GT)
góc AMB=góc DMC(Đối đỉnh)
BM=MC(GT)
=>tam giác AMB=tam giác DMC(c.g.c)
bạn tự vẽ hình nha
áp dụng địng lí py ta go vào tam giác ABC vuông ở A
=> \(BC^2=AB^2+AC^2\)
=\(6^2+8^2\)
=36+64
=100
=> BC=10cm
a) ta có định lí: trong 1 tam giác vuông đường trung tuyến ứng với cạnh huyền thì = nửa cạnh huyền
=> AM=\(\frac{BC}{2}\)=\(\frac{10}{2}\)=5 cm
b)xét 2 tam giác AMB và DMC có:
AM =MD(gt)
BM=CM(AM là trung tuyến)
góc AMB=góc DMC(đối đỉnh)
=> 2 tam giác AMB=DMC(c.g.c)
c)
cì AM =\(\frac{BC}{2}=BM=CM\)
mà AM =DM(gt)
=> AM+DM=BM+CM hay AD=BC
2 tam giác ABM=DMC(theo b)
=> AB=DC(2 cạnh tương ứng)
xét 2 tam giác ABC và CDA có:
AB =DC(chứng minh trên )
AD =BC(chứng minh trên)
cạnh AC chung
=> 2 tam giác ABC =CDA(c.c.c)
=> 2góc BAC=DCA=90độ(2 góc tương ứng)
hay AC vuông góc với DC
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
Xét tam giác ABC có góc B > góc C suy ra AC > AB
Xét tam giác vuông ABH và tam giác vuông ACH
chung AH
có AC > AB (CMT)
suy ra HC > HB
c) Vì HC > HB (CMT)
Xét tam giác vuông BHD và tam giác vuông CHD
Có chung DH , BC >HB nên DC >DB
Xét tam giác BDC có DC > DB nên góc DBC > góc DCB
Bài 16:
Xét tam giác ABM và tam giác DCM
có AM=DM (GT)
góc AMB=góc DMC (đối đỉnh)
BM=MC (GT)
suy ra tam giác ABM=tam giác DCM (c.g.c) (1)
b) Từ (1) suy ra góc MAB = góc MDC (hai góc tuơng ứng)
mà góc MAB so le trong góc MDC
suy ra AB // CD
c) Từ (1) suy ra AB = CD
Xét tam giác ACD có AC + CD > AD
mà AD=2AM, AB=CD (CMT)
suy ra AC +AB >2AM
a. Hình vẽ (1 điểm)
Xét ΔABM và ΔBCM có:
BM = MC
∠(AMB) = ∠(BMC)
AM = MD
⇒ ΔABM = ΔBCM (c.g.c) (1 điểm)
a: Xét ΔAMB và ΔDMC có
MA=MD
góc AMB=góc DMC
MB=MC
Do đó: ΔAMB=ΔDMC
=>AB=CD
b: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
nên ABDC là hình bình hành
=>BD//AC
Xét ΔAMB và ΔDMC có
MA=MD
góc AMB=góc DMC
MB=MC
Do đó: ΔAMB=ΔDMC
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔAMB=ΔDMC
b: Ta có: ΔAMB=ΔDMC
=>\(\widehat{MAB}=\widehat{MDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//DC