Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của le thu giang - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo bài làm tương tự ở link trên.
\(a)Xét\Delta ABC,tacó:\)
\(\Rightarrow A+ABC+ACB=180^o\left(tổngbagóctamgiác\right)\)
\(\Rightarrow90^o+ABC+40^o=180^o\)
\(\Rightarrow ABC=180^o-130^o\)
\(\Rightarrow ABC=50^o\)
\(b)Xét\Delta AMB=\Delta EMC,tacó:\)
\(\left\{{}\begin{matrix}MB=MC\left(gt\right)\\M_1=M_2\\MA=ME\left(gt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta AMB=\Delta EMC\left(c-g-c\right)\)
\(\Rightarrow A=E\left(2góctươngứng\right)\)
\(MàA_1vàE_1ởvịtrísoletrong\)
\(\Rightarrow AB//EC\)
Câu c đợi chút
Giải:
Làm phiền bạn tự vẽ hình ạ. :(((
a) Ta có: tam giác ABC vuông tại A (gt)
=> Góc ABC + góc ACB = 90o (định lí)
=> Góc ABC = 90o - góc ACB = 90o - 40o = 50o
Vậy góc ACB = 50o.
b) Vì M là trung điểm của BC (gt)
nên BM = CM
Xét tam giác ABM và tam giác CEM có:
BM = CM (chứng minh trên)
Góc AMB = góc CME (2 góc đối đỉnh)
AM = EM (gt)
=> Tam giác ABM = tam giác ECM (c.g.c) (đpcm)
c) Ta có: tam giác ABM = tam giác ECM (chứng minh trên)
=> Góc BAM = góc CEM (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
=> AB // CE (dấu hiệu nhận biết)
Lại có: AE // d (gt), EK _|_ d tại K (gt)
=> EK _|_ AE tại E
=> Góc AEK = 90o
hay góc AEC + góc CEK = 90o
Xét tam giác ABC và tam giác ACE có:
AB = CE (vì tam giác ABC = tam giác ECM)
Góc BAC = góc ACE (= 90o)
AC là cạnh chung
=> Tam giác ABC = tam giác CEA (c.g.c)
=> Góc ABC = góc AEC (2 góc tương ứng)
Mà góc AEC + góc CEK = 90o (chứng minh trên)
góc ABC + góc ACB = 90o (chứng minh trên)
=> Góc CEK = góc ACB (đpcm)
Bạn gõ thừa chữ "cân"
a/ Xét t/g ABC vuông tại A có
\(\widehat{ABC}+\widehat{ACB}=90^o\) (t/c)
\(\Rightarrow\widehat{ABC}=90^o-40^o=50^o\)
b/ Xét t/g AMB và t/g EMC có
AM = EM
\(\widehat{AMB}=\widehat{EMC}\) (đối đỉnh)MB = MC
=> t/g AMB = t/g EMC (c.g.c)c/ Có
AE // CK
=> \(\widehat{AEK}+\widehat{EKC}=180^o\) (tcp)
=> \(\widehat{AEK}=\widehat{AEC}+\widehat{CEK}=90^o\)
Xét t/g ABC vuông tại A có AM là đường trung tuyến
=> AM = 1/2 BC = BM
=> t/g AMB cân tại A
=> \(\widehat{ABC}=\widehat{BAM}\)
Mà \(\widehat{BAM}=\widehat{CEA}\)
=> \(\widehat{CBA}+\widehat{CEK}=90^o\)
=> \(\widehat{CEK}=\widehat{ACB}\)
Hướng dẫn:
a) Có: \(\Delta\)ABC vuông tại A và ^ACB = 40\(^o\)
=> ^ABC = 90\(^o\)- 40\(^o\)=50\(^o\)
b ) Xét \(\Delta\)AMB và \(\Delta\)EMC có: AM = ME ; BM = MC ( gt ) ; ^AMB = ^EMC ( đối đỉnh )
=> \(\Delta\)AMB = \(\Delta\)EMC
=> ^ABM = ^ECM => ^ABC = ^BCE => AB //EC
c) \(\Delta\)ABC vuông tại A có AM là trung tuyến
=> AM = BM= CM =ME
=> \(\Delta\)MEC cân tại M => ^MEC =^ MCE mà ^MEC = ^ECK ( so le trong ) và ^KEC + ^ECK = 90\(^o\)
=> ^^MCE + ^KEC = 90\(^o\)
Ta lại có: AB //EC => ^ECA = 90 \(^o\)=> ^BCA +^ BCE = 90\(^o\)=> ^BCA + ^MCE = 90\(^o\)
=> ^BCA = ^KEC
Sao câu B ko có chứng minh AB//EC?