Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(AH^2=HB.HC=50.8=400\)
\(\Rightarrow AH=20\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}.20\left(50+8\right)=\dfrac{1}{2}.20.58\left(cm^2\right)\)
mà \(S_{ABC}=\dfrac{1}{2}AB.AC\)
\(\Rightarrow AB.AC=20.58=1160\)
Theo Pitago cho tam giác vuông ABC :
\(AB^2+AC^2=BC^2\)
\(\Rightarrow\left(AB+AC\right)^2-2AB.AC=BC^2\)
\(\Rightarrow\left(AB+AC\right)^2=BC^2+2AB.AC\)
\(\Rightarrow\left(AB+AC\right)^2=58^2+2.1160=5684\)
\(\Rightarrow AB+AC=\sqrt[]{5684}=2\sqrt[]{1421}\left(cm\right)\)
Chu vi Δ ABC :
\(AB+AC+BC=2\sqrt[]{1421}+58=2\left(\sqrt[]{1421}+29\right)\left(cm\right)\)
Lời giải:
a. Áp dụng hệ thức lượng trong tam giác vuông:
$144=AH^2=BH.HC(1)$
$BH+CH=BC=25(2)$
Từ $(1); (2)$ áp dụng định lý Viet đảo thì $BH, CH$ là nghiệm của pt: $x^2-25x+144=0$
$\Rightarrow BH, CH= (16,9)$
Mà $AB< AC$ nên $BH< CH$
$\Rightarrow BH=9; CH=16$ (cm)
$AB=\sqrt{BH^2+AH^2}=\sqrt{9^2+12^2}=15$ (cm)
$AC=\sqrt{CH^2+AH^2}=\sqrt{16^2+12^2}=20$ (cm)
b.
$AM=\frac{BC}{2}=\frac{25}{2}$ (cm)
$\sin \widehat{AMH}=\frac{AH}{AM}=\frac{24}{25}$
$\Rightarrow \widehat{AMH}\approx 74^0$
c.
$HM=\sqrt{AM^2-AH^2}=\sqrt{(\frac{25}{2})^2-12^2}=3,5$ (cm)
$S_{AHM}=\frac{AH.HM}{2}=\frac{12.3,5}{2}=21$ (cm2)
a: Đặt BH=x; CH=y
ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC
=>x*y=144
mà x+y=25
nên x,y là các nghiệm của phương trình:
a^2-25a+144=0
=>a=9 hoặc a=16
=>BH=9cm; CH=16cm
\(AB=\sqrt{9\cdot25}=15\left(cm\right)\)
\(AC=\sqrt{16\cdot25}=20\left(cm\right)\)
\(AH=\sqrt{9\cdot16}=12\left(cm\right)\)
b: ΔABC vuông tại A có AM là trung tuyến
nên AM=BC/2=12,5cm
Xét ΔAHM vuông tại H có sin AMH=AH/AM=24/25
nên \(\widehat{AMH}\simeq74^0\)
c: HM=căn AM^2-AH^2=3,5cm
S AHM=1/2*HM*AH=1/2*12*3,5=21cm2
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)
hay AC=4(cm)
Vậy: AC=4cm
b) Xét ΔABC có AE là tia phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BE}{AB}=\dfrac{CE}{AC}\)(Tính chất tia phân giác của tam giác)
hay \(\dfrac{BE}{3}=\dfrac{CE}{4}\)
mà BE+CE=BC=5cm(gt)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BE}{3}=\dfrac{CE}{4}=\dfrac{BE+CE}{3+4}=\dfrac{BC}{7}=\dfrac{5}{7}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{BE}{3}=\dfrac{5}{7}\\\dfrac{CE}{4}=\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BE=\dfrac{15}{7}\left(cm\right)\\CE=\dfrac{20}{7}\left(cm\right)\end{matrix}\right.\)
Vậy: \(BE=\dfrac{15}{7}cm;CE=\dfrac{20}{7}cm\)
Gia sử: AB < AC => BH < HC
Áp dụng hệ thức lượng ta có:
\(AH^2=BH.CH\)
\(\Rightarrow\)\(BH.CH=144\)
\(BH+CH=BC=25\)
Áp dụng hệ thức Vi-ét thì BH và CH là nghiệm của phương trình:
\(x^2-25x+144=0\)
\(\Leftrightarrow\)\(\left(x-9\right)\left(x-16\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=9\\x=16\end{cases}}\)
Do BH < HC (theo cách vẽ) nên \(BH=9;\)\(HC=16\)
Áp dụng hệ thức lượng ta có:
\(AB^2=BH.BC\)
\(\Rightarrow\)\(AB^2=9.25=225\)
\(\Rightarrow\)\(AB=15\)
\(AC^2=CH.BC\)
\(\Rightarrow\)\(AC^2=16.25=400\)
\(\Rightarrow\)\(AC=20\)
Cảm ơn đã giúp nha!!!