K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

b: Ta có: AH\(\perp\)BC

DE\(\perp\)BC

Do đó: AH//DE
Ta có: \(\widehat{BIH}+\widehat{HBI}=90^0\)(ΔHBI vuông tại H)

\(\widehat{ADI}+\widehat{ABD}=90^0\)(ΔABD vuông tại A)

mà \(\widehat{HBI}=\widehat{ABD}\)

nên \(\widehat{BIH}=\widehat{ADI}\)

=>\(\widehat{ADI}=\widehat{AID}\)

=>ΔAID cân tại A

c: Ta có: \(\widehat{CAE}+\widehat{BAE}=\widehat{BAC}=90^0\)

\(\widehat{HAE}+\widehat{BEA}=90^0\)

mà \(\widehat{BAE}=\widehat{BEA}\)(ΔBAE cân tại B)

nên \(\widehat{CAE}=\widehat{HAE}\)

=>AE là phân giác của góc HAC

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

b: ΔBAD=ΔBED

=>DA=DE và BA=BE

=>ΔADE cân tại D và BD là trung trực của AE
c: AD=DE

DE<DC

=>AD<DC

d: AH vuông góc BC

DE vuông góc BC

=>AH//DE

góc AFD=góc BFH=90 độ-góc DBC

góc ADF=90 độ-góc ABD

mà góc DBC=góc ABD

nên góc AFD=góc ADF
=>ΔADF cân tại A

13 tháng 12 2017

a) *Xét  ΔABD & ΔEBD

      +)AB=BE

      +)^ABD=^DBC

      +)chung BD

=>ΔABD=ΔEBD(cgc) 

b) vì ΔABD=ΔEBD(cmt) 

=>^A=^BED(2 góc tg ứng) 

=>^BED=90°(^A=90°)

=>DE vg góc vs BC

c) vì  ΔBAC vg ở  A

=>^BAH+^HAC=90°   (1)

Lại có :ΔAHC vg ở  H

=>^HAC+^ACB=90°    (2)

Từ (1),(2)=>^BAH=^ACB(đpcm) 

26 tháng 3 2018

Ta có :

a) *Xét  ΔABD & ΔEBD

      +)AB=BE

      +)^ABD=^DBC

      +)chung BD

=>ΔABD=ΔEBD(cgc) 

b) vì ΔABD=ΔEBD(cmt) 

=>^A=^BED(2 góc tg ứng) 

=>^BED=90°(^A=90°)

=>DE vg góc vs BC

c) vì  ΔBAC vg ở  A

=>^BAH+^HAC=90°   (1)

Lại có :ΔAHC vg ở  H

=>^HAC+^ACB=90°    (2)

Từ (1),(2)=>^BAH=^ACB(đpcm) 

1) Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

5 tháng 4 2021

bn trả lời mấy ý còn lại hộ mk vs

 

 

25 tháng 2 2020

a) Xét tgiac ABD và EBD có:

+ AB = BE

+ BD chung

+ góc ABD = EBD 

=> Tgiac ABD = EBD (c-g-c)

=> đpcm

b) Tgiac ABD = EBD (cmt) => AD = DE (hai cạnh t/ứng)

Xét tgiac ADE có AD = DE => Tgiac ADE cân tại D

=> đpcm

c) AH \(\perp\)BC, DE\(\perp\)BC => AH\(//\)DE

=> góc HAE = AED (2 góc SLT do AH\(//\)DE)

Mà tgiac ADE cân tại D (cmt) => góc AED = DAE

=> góc HAE = DAE

=> AE là tia pgiac góc HAC (đpcm)

d) Xét tgiac ADK và EDC có:

+ góc DAK = DEC = 90o

+ góc ADK = EDC (2 góc đối đỉnh)

+ AD = DE (do tgiac ABD = EBD)

=> Tgiac ADK = EDC (g-c-g)

=> AK = EC và KD = DC (2 cạnh t/ứng)

=> Tgiac KDC cân tại K => Góc DCK = (180o- góc KDC) /2

Tgiac AED cân tại D => góc EAD = (180o- góc ADE) /2

Mà góc ADE = KDC (2 góc đối đỉnh) => góc DCK = EAD

Mà 2 góc này SLT => AE \(//\)KC

=> đpcm

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=10^2-6^2=64\)

hay AC=8(cm)

Vậy: AC=8cm

25 tháng 2 2021

vẽ hình giúp mình luôn nha !!!!! cảm ơn các bạn nhiều! <3

 

a) Áp dụng Pytago dễ dàng tính được AC=4

b) Xét hai tam giác vuông ABD và HBD có 

BD cạnh chung

góc ABD = góc HBD (BD là phân giác góc B)

Nên hai tam giác trên bằng nhau (cạnh huyền - góc nhọn)

Suy ra AB = BH

AD = DH

Suy ra BD là trung trực của AH (định lý 2)

c) Ý bạn là E là giao điểm của AH và BD?

Hay E là giao điểm của DH và AB?

6 tháng 4 2019

a, vì BD=BA nên t.giác DBA caab tại B

=>\(\widehat{BDA}\)=\(\widehat{BAD}\)mà \(\widehat{EDB}\)=\(\widehat{A}\)=90 độ nên suy ra góc \(\widehat{EAD}\)=\(\widehat{EDA}\)

=>t.giác EAD cân tại E

=>AE=DE đpcm

b,vì ED và AH cùng vuông góc vs BC nên ED//AH

=> \(\widehat{EDA}\)=\(\widehat{DAH}\)(so le) mà \(\widehat{EDA}\)=\(\widehat{EAD}\)(t.giác AED cân tại E)

=>\(\widehat{DAH}\)=\(\widehat{EAD}\)

=> AD là p/g của góc HAC

c, xét 2 t.giác vuông AKD và AHD có:

                 AD chung

                \(\widehat{KAD}\)=\(\widehat{HAD}\)(AD là p/g của \(\widehat{HAC}\))

=>t.giác AKD=t.giác AHD(CH-GN)

=>AK=AH

#HỌC TỐT#

           

6 tháng 4 2019

A B C H D E K