K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2022

`Answer:`

undefined

a. Theo giả thiết: BD là phân giác `\hat{ABC}=>\hat{ABD}=\hat{EBD}`

Xét `\triangleABD` và `\triangleEBD:`

`BD` chung

`\hat{ABD}=\hat{EBD}`

`=>\triangleABD=\triangleEBD(cg-gn)`

`=>BA=BE`

b. Xét `\triangleAIB` và `\triangleEIB:`

`BA=BE`

`BI` chung

`\hat{ABI}=\hat{EBI}`

`=>\triangleAIB=\triangleEIB(c.g.c)`

`=>AI=EI(1)`

`=>\hat{AIB}=\hat{EIB}`

Mà `\hat{AIB}+\hat{EIB}=180^o=>\hat{AIB}=\hat{EIB}=90^o`

`=>BI⊥AE(2)`

Từ `(1)(2)=>BI` là đường trung trực của `AE` hay `BD` là đường trung trực của `AE`

c. `\hat{ABD}=\hat{EBD}(cmt)` mà `\hat{ABD}+\hat{EBD}=\hat{ABC}`

\(\Rightarrow\widehat{ABD}=\widehat{EBD}=\frac{60^o}{2}=30^o\)

\(\Rightarrow\widehat{ADB}=90^o-30^o=60^o\)

Xét `\triangleABD:` `AB` đối diện với `\hat{ADB}`

Xét `\triangleDEC:` `DC` đối diện với `\hat{DEC}`

Mà `\hat{ABD}<\hat{DEC}=>AB<DC`

19 tháng 3 2022

a.Xét tam giác vuông ABD và tam giác vuông EBD, có:

AD: cạnh chung

góc ABD = góc EBD ( gt )

Vậy tam giác vuông ABD = tam giác vuông EBD(cạnh huyền.góc nhọn)

=> BE=BA ( 2 cạnh tương ứng )

b.=> AD = ED ( 2 cạnh tương ứng )

=> Tam giác DAE cân tại D

Mà góc BDA = góc BDE ( 2 góc tương ứng )

=> BD là trung trực của đoạn thẳng AE

19 tháng 3 2022

phần a thiếu 1 yếu tố: góc A=góc E=90\(^0\)

19 tháng 3 2022

Hình vẽ

B A C D E

a) Do BD là tia phân giác của \(\widehat{BAC\left(gt\right)\Rightarrow}\) \(\widehat{ABD}=\widehat{DBC}hay\widehat{ABD}=\widehat{DBE}\)

    Do \(DE\perp BC\left(gt\right)\Rightarrow\widehat{DEB}=\widehat{DEC}=90^o\)

Xét \(\Delta ABD\) và \(\Delta EDB\) có : \(\left\{{}\begin{matrix}\widehat{ABD}=\widehat{DBE}\left(cmt\right)\\BDchung\\\widehat{BAC}=\widehat{DEB}\left(=90^o\right)\end{matrix}\right.\)

\(\Rightarrow\Delta ABD=\Delta EDB\left(ch-gn\right)\)

\(\Rightarrow AB=BE\) ( 2 cạnh tương ứng )

 

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

b: ΔBAD=ΔBED

=>BA=BE và DA=DE

=>ΔBAE cân tại B và BD là trung trực của AE
=>H là trung điểm của AE

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng

Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF

Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE

Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0
13 tháng 4 2022

a. Ta có tam giác AHB vuông tại H

 => AB là cạnh huyền

 mà AB = BD

=> BD > BH

=> H nằm giữa B và D

b, c,d tớ ko biết vì chưa đủ tầm

8 tháng 8 2018

a, Xét tg BAE và tg BDE  ( \(\widehat{BAE}=\widehat{BDE}=90^0\))

BA=BD (gt)

BE chung

=> tg BAE = tg BDE ( ch-cgv)

=> AE=ED 

Ta có \(\hept{\begin{cases}BA=BD\left(gt\right)\\AE=ED\left(cmt\right)\end{cases}}< =>\)BE trung trực AD (đpcm) 

b, +ED vuông BC

+ AH vuông BC

=> AH//DE

=> \(\widehat{HAD}=\widehat{ADE}\)( So le trong) (2)

Lại có gọi m là giao 2 đường thẳng BE và AD

vì BE trung trực AD =>+ \(\widehat{AME}=\widehat{EMD}=90^{0^{ }}\)

Xét tg AEM và tg DEM có \(\left(\widehat{AME}=\widehat{EMD}=90^0\left(cmt\right)\right)\)

+ AD = ED (cma)

+ EM chung

=> tg AEM = tg DEM ( ch-cgv)

=> \(\widehat{DAE}=\widehat{ADE}\)(2)

tỪ (1) VÀ (2) => \(\widehat{HAD}=\widehat{DAE}\)=> AD phân giác góc AHC

19 tháng 2 2022

a. xét tam giác vuông ADE và tam giác vuông ADF,có :

AB = AC ( ABC cân )

Góc EAD = góc FAD ( gt )

AD : cạnh chung

Vậy  tam giác vuông ADE = tam giác vuông ADF ( c.g.c )

=> DE = DF ( 2 cạnh tương ứng )

b. xét tam giác vuông BDE và tam giác vuông CDF, có:

góc B = góc C ( ABC cân )

BD = CD ( AD là đường phân giác cũng là đường trung tuyến trong tam giác cân ABC )

Vậy tam giác vuông BDE = tam giác vuông CDF ( cạnh huyền. góc nhọn)

c. ta có: AD là đường phân giác trong tam giác cân ABC cũng là đường trung trực của BC

 

a: Xét ΔAED vuông tại E và ΔAFD vuông tại F có

AD chung

\(\widehat{EAD}=\widehat{FAD}\)

Do đó: ΔAED=ΔAFD

SUy ra: DE=DF

b: Xét ΔBDE vuông tại E và ΔCDF vuông tại F có 

BD=CD

DE=DF

Do đó: ΔBDE=ΔCDF

c: Ta có: ΔABC cân tại A

mà AD là phân giác

nên AD là đường trung trực của BC

a: BC=10cm

b: Xét ΔBAC vuông tại A và ΔBHD vuông tại H có

BC=BD

góc B chung

Do đó:ΔBAC=ΔBHD

c: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

BA=BH

Do đó: ΔBAE=ΔBHE

Suy ra: \(\widehat{ABE}=\widehat{HBE}\)

hay BE là tia phân giác của góc ABC

Đề sai rồi bạn